Study and Evaluation of Test of Times Brooks-Iyengar Algorithm

##plugins.themes.academic_pro.article.main##

Latesh Kumar K.J
Leena H U

Abstract

The current fault tolerant computing systems and various computer systems still rely on the outstanding technique of resilient sensor Brook-Iyengars (BI) algorithm and this was invented and published in 1996 with IEEE computing systems. The novel idea proposed of the algorithm institutes groundwork standards in various domains like RealTime Operating Systems (RTOS), Fault Tolerant Schemes (FTS) and various application computing systems. The crucial contribution of the algorithm is majorly found in enhancing the features of MINIX real-time operating system, and hybrid architecture and scalability of the algorithm is proficient enough to encounter the unreliable distributed sensors data using the Byzantine [1] agreement and distributed decision-making process methods. In this paper, we study and reveal the contribution and influences of BI in MINIX real-time operating systems and their recent enhancement with fault tolerant schemes with a case study.

##plugins.themes.academic_pro.article.details##

How to Cite
Latesh Kumar K.J, & Leena H U. (2019). Study and Evaluation of Test of Times Brooks-Iyengar Algorithm. International Journal of Next-Generation Computing, 10(3), 152–162. https://doi.org/10.47164/ijngc.v10i3.163

References

  1. M Hadi Amini. 2019. Sustainable Interdependent Networks II, from smart power grids to Intelligent Transportation Networks, Book Chapter- II, Springer.
  2. Gabriel A. Wainer. 1995. Implementing Real-Time services in MINIX, ACM operating system review
  3. Tanenbaum Andrew S., Woodhull Albert S. 1999. Sistemas operativos: Diseno e Implementacion 2da Edicion, ISBN 9701701658, Editorial Prentice Hall.
  4. Buke Ao. 2015. Robust Fault Tolerant Rail Door State Monitoring Systems: Applying the Brooks-Iyengar Sensing Algorithm to Transportation Applications. International Journal of Next-Generation Computing, Vol. 8 Issue 2, p 108-114.
  5. Richard R. Brooks & S. Sithrama Iyengar. 1996. Robust Distributed Computing and Sensing Algorithm. Computer. 29 (6): 53–60. doi:10.1109/2.507632. ISSN 0018-9162. Archived from the original on 2010-04-08. Retrieved 2010-03-22.
  6. Krishnamachari, B. and Iyengar, S.S. 2004. Distributed Bayesian Algorithms for Fault-Tolerant Event Region Detection in Wireless Sensor Networks", IEEE Transaction in Computing.
  7. Ao, Buke, Wang, Yongcai, Yu Lu, Brooks, Richard R, Iyengar, S. S. 2016. On Precision Bound of Distributed Fault-Tolerant Sensor Fusion Algorithms. ACM Computer. Surv. 49 (1): 5:1–5:23.
  8. D. Dolev. 1982. The Byzantine Generals Strike Again, J. Algorithms, pp. 14-30.
  9. Chakrabarty, K. Iyengar, S.S. H. Qi and E.C. Cho. 2002. Grid Coverage of Surveillance and Target Location in Distributed Sensor Networks, IEEE Transactions on Computers, Vol 51, No. 12.
  10. D. Dolev; et al. 1986. Reaching Approximate Agreement in the Presence of Faults (PDF). Journal of the ACM. 33 (3): 499–516. CiteSeerX 10.1.1.13.3049. doi:10.1145/5925.5931. ISSN 0004-5411. Retrieved 2010-03-23.
  11. S. Mahaney & F. Schneider. 1985. Inexact Agreement: Accuracy, Precision, and Graceful Degradation. Proc. Fourth ACM Symp. Principles of Distributed Computing. pp. 237–249. CiteSeerX 10.1.1.20.6337. doi:10.1145/323596.323618. ISBN 978-0897911689.
  12. Mohammad Ilyas and Imad Mahgoub. 2004. Handbook of sensor networks: compact wireless and wired sensing systems (PDF). Bit.csc.lsu.edu. CRC Press. pp. 25–4, 33–2 of 864. ISBN 978-0-8493-1968-6.
  13. L. Lamport; R. Shostak; M. Pease. 1982. The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems. 4 (3): 382–401. CiteSeerX 10.1.1.64.2312. doi:10.1145/357172.357176.
  14. S. Mahaney and F. Schneider. 1985. Inexact Agreement: Accuracy, Precision, and Graceful Degradation, Proc. Fourth ACM Symp. Principles of Distributed Computing, ACM Press, New York, pp. 237-249.
  15. Junkil Park, Radoslav Ivanov Philadelphia, James Weimer, Miroslav Pajic Sang Hyuk Son, Insup Lee. 2017. Security of Cyber-Physical Systems in the Presence of Transient Sensor Faults, Journal ACM Transactions on Cyber-Physical Systems, Volume 1 Issue 3, Article No. 15 doi:10.1145/3064809
  16. R. Brooks and S. Iyengar. 1996. Robust Distributed Computing and Sensing Algorithm, IEEE Computer, pp 53-60.
  17. Pablo J. Rogina, Gabriel Wainer 1999. New Real-Time Extensions to the MINIX operating system, Proc. Of 5th International Conference on Information System Analysis and Synthesis (IASS’99).
  18. Kumar, V. 2012. Computational and compressed sensing optimizations for information processing in sensor network. International Journal of Next-Generation Computing
  19. Ao, B., Wang, Y., Yu, L., Brooks, R. R. and Iyengar, S. S. 2016. on precision bound of distributed fault-tolerant sensor fusion algorithms. ACM Compute. Surv. 49, 1 (May), 5:1–5:23.
  20. Penn State University 2013. Reactive Sensor Networks, AFRL-IF-RS-TR-2003-245, Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical, Information Service (NTIS), Defense Advanced Research Laboratory.
  21. Warrenedgar. 2019. An implementation of the Brooks-Iyengar algorithm using OpenMP Ihttps://github.com/warrenedgar/brooks-iyengar
  22. https://en.wikipedia.org/wiki/Brooks%E2%80%93Iyengar_algorithm
  23. https://github.com/warrenedgar/brooks-iyengar