High Utility Itemset Extraction using PSO with Online Control Parameter Calibration




This study investigates the use of evolutionary computation for mining high-value patterns from benchmark datasets. The approach employs a fitness function to assess the usefulness of each pattern. However, the effectiveness of evolutionary algorithms heavily relies on the chosen strategy parameters during execution. Conventional methods set these parameters arbitrarily, often leading to suboptimal solutions. To address this limitation, the research proposes a method for dynamically adjusting strategy parameters using temporal difference approaches, a machine learning technique called Reinforcement Learning (RL). Specifically, the proposed IPSO RLON algorithm utilizes SARSA learning to intelligently adapt the Crossover Rate and Mutation Rate within the Practical Swarm Optimization Algorithm. This allows IPSO RLON to effectively mine high-utility itemsets from the data.The key benefit of IPSO RLON lies in its adaptive control parameters. This enables it to discover optimal high-utility itemsets when applied to various benchmark datasets. To assess its performance, IPSO RLON is compared to existing approaches like HUPEUMU-GRAM, HUIM-BPSO, IGA RLOFF, and IPSO RLOFF using metrics like execution time, convergence speed, and the percentage of high-utility itemsets mined. From the evaluation it is observed that the proposed IPSO RLON perfroms better than the other methodology.


How to Cite
K, L., S, S., S, S., & S, A. (2024). High Utility Itemset Extraction using PSO with Online Control Parameter Calibration. International Journal of Next-Generation Computing, 15(1). https://doi.org/10.47164/ijngc.v15i1.1643


  1. Arunkumar, M. S., Suresh, P., and Gunavathi, C. 2020. “high utility infrequent itemset mining using a customized ant colony algorithm. ” Int. J. Parallel Program. 48, 5, 833–849. DOI: https://doi.org/10.1007/s10766-018-0621-7
  2. Bagui, S. and Stanley, P. 2020. “mining frequent itemsets from streaming transaction data using genetic algorithms. ” J. Big Data, vol. 7, no 7, 1 (Dec.), 1–20. DOI: https://doi.org/10.1186/s40537-020-00330-9
  3. Cao, H., Yang, S., Wang, Q., Wang, Q., and Zhang, L. 2019. “a Closed Itemset Property based Multi objective Evolutionary Approach for Mining Frequent and High Utility Itemsets. ” 2019 IEEE Congr. Evol. Comput. CEC 2019 - Proc., 3356–3363. DOI: https://doi.org/10.1109/CEC.2019.8789985
  4. Chen, Q., Huang, M., Xu, Q., Wang, H., and Wang, J. 2020. “reinforcement learningbased genetic algorithm in optimizing multidimensional data discretization scheme. ” Math. Probl 2020, 1–13. DOI: https://doi.org/10.1155/2020/1698323
  5. Das, P. K., Behera, H. S., and Panigrahi, B. K. 2016. “intelligent-based multi-robot path planning inspired by improved classical Q-learning and improved particle swarm optimization with perturbed velocity. ” Eng. Sci. Technol. an Int. J. 19, 1, 651–669. DOI: https://doi.org/10.1016/j.jestch.2015.09.009
  6. Djenouri, Y. and Comuzzi, M. 2017. “ga-Apriori: Combining apriori heuristic and genetic algorithms for solving the frequent itemsets mining problem. ” Lect 10526, 138–148. DOI: https://doi.org/10.1007/978-3-319-67274-8_13
  7. Djenouri, Y., Fournier-Viger, P., Belhadi, A., and Lin, J. C.-W. 2019. “metaheuristics for frequent and high-utility itemset mining, ” springer, cham. 10., 261–278. DOI: https://doi.org/10.1007/978-3-030-04921-8_10
  8. Drugan, M. M. 2019. “reinforcement learning versus evolutionary computation: A survey on hybrid algorithms. ” Swarm Evol 44, 228–246. DOI: https://doi.org/10.1016/j.swevo.2018.03.011
  9. J. C. W., L. e. a. 2016. High utility-itemset mining and privacy-preserving utility mining. Perspect 7, 74–80. DOI: https://doi.org/10.1016/j.pisc.2015.11.013
  10. Kannimuthu, S. and Premalatha, K. 2014. “discovery of high utility itemsets using genetic algorithm with ranked mutation. ” Appl. Artif. Intell., vol. 28, no 28, 4 (Apr.), 337–359. DOI: https://doi.org/10.1080/08839514.2014.891839
  11. Lin, J. C. W., Yang, L., Fournier-Viger, P., Frnda, J., Sevcik, L., and Voznak, M. 2015. “an evolutionary algorithm to mine high-utility itemsets. ” Adv. Electr. Electron. Eng., vol. 13, no 13, 4, 392–398. DOI: https://doi.org/10.15598/aeee.v13i4.1474
  12. Lin, J. C. W., Yang, L., Fournier-Viger, P., Hong, T. P., and Voznak, M. 2017. “a binary PSO approach to mine high-utility itemsets, ” Soft Comput. 21, 17 (Sept.), 5103–5121. DOI: https://doi.org/10.1007/s00500-016-2106-1
  13. Logeswaran, K. and Suresh, P. 2021. “high utility itemset mining using genetic algorithm assimilated with off policy reinforcement learning to adaptively calibrate crossover operation.” Comput. Intell. 10. DOI: https://doi.org/10.1111/coin.12490
  14. Logeswaran, K., Suresh, P., and Anandamurugan, S. 2023. “particle Swarm Optimization Method Combined with off Policy Reinforcement Learning Algorithm for the Discovery of High Utility Itemset. ” Inf. Technol. Control 52, 1 (Mar.), 25–36. DOI: https://doi.org/10.5755/j01.itc.52.1.31949
  15. Luna, J. M., Kiran, R. U., Fournier-Viger, P., and Ventura, S. 2023. “efficient mining of top-k high utility itemsets through genetic algorithms. ” Inf. Sci 624, 529–553. DOI: https://doi.org/10.1016/j.ins.2022.12.092
  16. Nawaz, M. S., Fournier-Viger, P., Yun, U., Wu, Y., and Song, W. 2021. Mining High Utility Itemsets with Hill Climbing and Simulated Annealing. ACM Transactions on Management Information Systems 13, 1 (oct). DOI: https://doi.org/10.1145/3462636
  17. Piperagkas, G. S., Georgoulas, G., Parsopoulos, K. E., Stylios, C. D., and Likas, A. C. 2012. “integrating particle swarm optimization with reinforcement learning in noisy problems. ” GECCO’12 - Proc. 14th Int. Conf. Genet. Evol. Comput., 65–72. DOI: https://doi.org/10.1145/2330163.2330173
  18. Rahmati, B. and Sohrabi, M. K. 2019. A systematic survey on high utility itemset mining. 18, 4. DOI: https://doi.org/10.1142/S0219622019300027
  19. Song, W. and Huang, C. 2018. “mining high utility itemsets using bio-inspired algorithms: A diverse optimal value framework, ” IEEE access. 6, 19568–19582. DOI: https://doi.org/10.1109/ACCESS.2018.2819162
  20. Turk¨ olmez, G. B. and Kocakoc¸, D. ¨ 2022. Utility-frequency analysis using customer market basket data in the retail sector. In International Journal of Business Information Systems. Vol. 41. Inderscience Publishers, 69–81.
  21. Wang, S. and Yin, Y. 2018. “polygene-based evolutionary algorithms with frequent pattern mining. ” Front. Comput. Sci., vol. 12, no 12, 5, 950–965. DOI: https://doi.org/10.1007/s11704-016-6104-3
  22. Wu, J. M. T., Zhan, J., and Lin, J. C. W. 2017. “an ACO-based approach to mine high-utility itemsets, ” Knowledge-Based Syst. 116, 102–113. DOI: https://doi.org/10.1016/j.knosys.2016.10.027
  23. Zhang, C., Almpanidis, G., Wang, W., and Liu, C. 2018. “an empirical evaluation of high utility itemset mining algorithms. ” Expert Syst 101, 91–115. DOI: https://doi.org/10.1016/j.eswa.2018.02.008
  24. Zhang, L., Fu, G., Cheng, F., Qiu, J., and Su, Y. 2018. “a multi-objective evolutionary approach for mining frequent and high utility itemsets. ” Appl 62, 974–986. DOI: https://doi.org/10.1016/j.asoc.2017.09.033