Content-Based Image Retrieval: The State of the Art
##plugins.themes.academic_pro.article.main##
Abstract
Content-Based Image Retrieval (CBIR) is the solution to the image retrieval problem based on the contents of the query image. The objective of the CBIR system is to retrieve the visually similar images from the database efficiently and effectively but still, no satisfactory performance has been achieved. The performance of the CBIR system mainly depends on the feature extraction, feature selection, distance measures (similarity computation), Classification, and ranking of matched images. Feature extraction is the procedure of deriving the set of features from images for matching the visual similarity and they can be further classified based on color, texture, and shape descriptors. Performance is not up to mark when Color, Texture or Shape descriptors individually applied. Better determination of blend of Color, Texture, and/or Shape features can enhance performance in the context of precision and recall. This paper mainly concentrates on the brief review of the different state of art techniques used for CBIR along with prerequisite knowledge over this domain.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Sagar Chavda, & Mahesh Goyani. (2019). Content-Based Image Retrieval: The State of the Art. International Journal of Next-Generation Computing, 10(3), 193–212. https://doi.org/10.47164/ijngc.v10i3.166
References
- Abate, A. F., Nappi, M., Ricciardi, S., & Tortora, G. (2004). Faces: 3d facial reconstruction from ancient skulls using content based image retrieval. Journal of Visual Languages and Computing , 15 (5), 373–389.
- Alphonsa, T., & Sreekumar, K. (2014). A Survey on Image Feature Descriptors-Color , Shape and Texture. International Journal of Computer Science and Information Technologies,, 5 (6), 7847-7850. doi: 10.1016/0031-3203(81)90028-5
- Alsmadi, M. K., Omar, K. B., & Noah, S. A. M. (2011). Fish classification based on robust fea- tures extraction from color signature using back-propagation classifier. Journal of Computer Science, 7 , 52-58. doi: https://doi.org/10.3844/jcssp.2011.52.58
- Antani, S., Long, L. R., & Thoma, G. R. (2008). Bridging the gap: Enabling cbir in medical applications. In Computer-based medical systems, 21st ieee international symposium on (pp. 4–6).
- Boparai, N. K., & Chhabra, A. (2015). A Hybrid Approach for Improving Content Based Image Retrieval Systems. 1st International Conference on Next Generation Computing Technologies(1), 944-949.
- Chakrabarti, K., Ortega-Binderberger, M., Porkaew, K., Zuo, P., & Mehrotra, S. (2000). Similar shape retrieval in mars (Tech. Rep.). Illinois Univ at Urbana-Champaign Dept. of Computer Science.
- Chang, C., Xiaoyang, Y., Xiaoming, S., & Boyang, Y. (2017). Image retrieval by information fusion based on scalable vocabulary tree and robust Hausdorff distance. Eurasip Journal on Advances in Signal Processing (1), 1-13. doi: 10.1186/s13634-017-0456-1
- Chang, C., Yu, X., Sun, X., & Yu, B. (2017). Image retrieval by information fusion based on scalable vocabulary tree and robust hausdorff distance. Eurasip Journal on Advances in Signal Processing , 1-13. doi: https://doi.org/10.1186/s13634-017-0456-1
- Choras, R. S. (2010). Cbir system for detecting and blocking adult images. In Proceedings of the 9th world scientific and engineering academy and society international conference on signal processing (pp. 52–57).
- Chuctaya, H., Portugal, C., Beltran, C., Gutierrez, J., Lopez, C., & Tupac, Y. (2011). M- cbir: A medical content-based image retrieval system using metric data-structures. In 30th international conference of the chilean computer science society (pp. 135–141).
- Colombo, C., & Alberto, D. B. (2002). Visible image retrieval. Image databases: Search and retrieval of digital imagery , 2 , 11–33.
- Comon, P. (1994). Independent component analysis, a new concept? Signal processing , 36 (3), 287–314.
- Davatzikos, C., Tao, X., & Dinggang, S. (2003). Hierarchical active shape models using the wavelet transform. IEEE transactions on medical imaging , 22 (3), 414–423.
- Dubey, S. R., Singh, S. K., & Singh, R. K. (2015). Boosting local binary pattern with bag-of-filters for content based image retrieval. IEEE UP Section Conference on Electrical Computer and Electronics, 1-6. doi: https://doi.org/10.1109/UPCON.2015.7456703
- Eakins, J., Graham, M., & Franklin, T. (1999). Content-based image retrieval. Library and Information Briefings, 85 , 1–15.
- Effat, N., & Kumar, A. T. (2017). Enhanced content based image retrieval using machine learning techniques. In Innovations in information, embedded and communication systems, international conference on (p. 1-12).
- Enser, P. G., Sandom, C. J., & Lewis, P. H. (2005). Surveying the reality of semantic image retrieval. In International conference on advances in visual information systems (pp. 177– 188).
- Fadaei, S., Amirfattahi, R., & Ahmadzadeh, M. R. (2017). New content-based image retrieval system based on optimised integration of dcd, wavelet and curvelet features. IET Image Processing , 11 , 89-98. doi: https://doi.org/10.1049/iet-ipr.2016.0542
- Faria, F. F., Veloso, A., Almeida, H. M., Valle, E., da S Torres, R., Gonccalves, M. A., & Meira,
- J. W. (2010). Learning to rank for content-based image retrieval. In Proceedings of the international conference on multimedia information retrieval (p. 285-294).
- Graham, M. E. (2001). The cataloguing and indexing of images: time for a new paradigm? Art Libraries Journal , 26 (1), 22–27.
- Hafiane, A., Chaudhuri, S., Seetharaman, G., & Zavidovique, B. (2006). Region-based cbir in gis with local space filling curves to spatial representation. Pattern Recognition Letters, 27 (4), 259–267.
- Haralick, R., & Shanmugam, K. (1973). Textural features for image classification. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS , SMC-3 , 610-621. doi:
- https://ieeexplore.ieee.org/document/4309314
- Holt, B., & Hartwick, L. (1994). Retrieving art images by image content: the uc davis qbic project. Aslib proceedings, 46 (10), 243–248.
- Huang, J., Kumar, S. R., & Mitra, M. (1997). Combining supervised learning with color correlograms for content-based image retrieval. Proceedings of the Fifth ACM Interna- tional Conference on Multimedia - MULTIMEDIA, 325334. doi: https://doi.org/10.1145/ 266180.266383
- Islam, M. M., Zhang, D., & Lu, G. (2008). Automatic categorization of image regions using dominant color based vector quantization. In Digital image computing: Techniques and applications (p. 191-198).
- Ivanova, K., & Stanchev, P. (2009). Color harmonies and contrasts search in art image collections.
- In Advances in multimedia, 1st international conference on (pp. 180–187).
- Jabid, T., Kabir, M. H., & Chae, O. (2010). Local directional pattern (ldp)-a robust image descriptor for object recognition. 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, 482487. doi: https://doi.org/10.1109/AVSS.2010.17
- Jhanwar, N., Chaudhuri, S., Seetharaman, G., & Zavidovique, B. (2004). Content based image retrieval using motif cooccurrence matrix. Image and Vision Computing , 22 (14), 1211– 1220.
- Jiang, X., & Bunke, H. (1991). Simple and fast computation of moments. Pattern recognition, 24 (8), 801–806.
- Jing, H., Kumar, S., Mitra, M., Zhu, W.-J., & Zabih, R. (1997). Image indexing using color correlograms. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 762-768. doi: 10.1109/CVPR.1997.609412
- Jolliffe, I. (2011). Principal component analysis. In M. Lovric (Ed.), International encyclopedia of statistical science (pp. 1094–1096). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-04898-2 455
- Jones, B., Schaefer, G., & Zhu, S. (2004). Content-based image retrieval for medical infrared im- ages. In Engineering in medicine and biology society, 26th annual international conference of the ieee (Vol. 1, pp. 1186–1187).
- Joshi, C., Purohit, G., & Mukherjee, S. (2017). Impact of cbir journey in satellite imaging.
- In Communication and computing systems: Proceedings of the international conference on communication and computing systems (p. 341).
- Khare, A., & Srivastava, P. (2017). Utilizing multiscale local binary pattern for content-based image retrieval. Multimedia Tools and Applications, 77 , 1237712403. doi: https://doi.org/ 10.1007/s11042-017-4894-4
- Khattab, D., Ebied, H. M., Hussein, A. S., & Tolba, M. F. (2014). Color image segmentation based on different color space models using automatic grabcut. The Scientific World Journal , 2014 .
- Kumar, N., Berg, A., Belhumeur, P. N., & Nayar, S. (2011). Describable visual attributes for face verification and image search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (10), 1962–1977.
- Kumar, T. G. S., & Nagarajan, V. (2018). Local curve pattern for content-based image retrieval.
- Pattern Analysis and Applications, (In press), 1-10. doi: https://doi.org/10.1007/s10044
- -018-0724-1
- Kumar, T. S., & Nagarajan, V. (2015). Local smoothness pattern for content based image retrieval. In Communications and signal processing, international conference on (p. 1190- 1193).
- Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature Science Journal , 401 (6755), 788.
- Lee, Y.-H., & Kim, Y. (2015). Efficient image retrieval using advanced surf and dcd on mobile platform. Multimedia Tools and Applications, 74 (7), 2289–2299.
- Li, A., & Bao, X. (2010). Extracting image dominant color features based on region growing. In
- Web information systems and mining, international conference on (Vol. 2, p. 120-123).
- List, J. (2007). How drawings could enhance retrieval in mechanical and device patent searching.
- World Patent Information, 29 (3), 210–218.
- Liu, Y., Huang, Y., & Gao, Z. (2014). Feature extraction and similarity measure for crime scene investigation image retrieval. Journal of Xian University of Posts and Telecommunications, 19 , 11–16.
- Liu, Y., Huang, Y., Zhang, S., Zhang, D., & Ling, N. (2017). Integrating object ontology and region semantic template for crime scene investigation image retrieval. In Industrial electronics and applications, 12th ieee conference on (pp. 149–153).
- Liu, Y., Zhang, D., Lu, G., & Ma, W. Y. (2007). A survey of content-based image retrieval with high-level semantics. Pattern Recognition, 40 , 262-282. doi: https://doi.org/10.1016/ j.patcog.2006.04.045
- Long, L. R., Antani, S., Deserno, T. M., & Thoma, G. R. (2009). Content-based image retrieval in medicine: retrospective assessment state of the art and future directions. International Journal of Healthcare Information Systems and Informatics, 4 (1), 1–16.
- Lopes, A. P., de Avila, S. E., Peixoto, A. N., Oliveira, R. S., & de A Araujo, A. (2009). A bag- of-features approach based on hue-sift descriptor for nude detection. In Signal processing conference, 17th european (pp. 1552–1556).
- Lopes, A. P., de Avila, S. E., Peixoto, A. N., Oliveira, R. S., de A Araujo, A., & de M Coelho,
- M. (2009). Nude detection in video using bag-of-visual-features. In Computer graphics and image processing, 22nd brazilian symposium on (pp. 224–231).
- Lu, F., & Huang, J. (2016). An improved local binary pattern operator for texture classification.
- In Acoustics, speech and signal processing, ieee international conference on (p. 1308-1311).
- Manjunath, S., Ohm, J., Vasudevan, V., & Yamada, A. (2001). Color and texture descriptors.
- IEEE Transactions on circuits and systems for video technology , 11 (6), 703-715.
- Mary, I. T. B., Vasuki, A., & Manimekalai, M. A. P. (2017). An optimized feature selection cbir technique using ann. International Conference on Electrical, Electronics, Communication Computer Technologies and Optimization Techniques, 470-477. doi: https://doi.org/10
- .1109/ICEECCOT.2017.8284550
- Mathew, S. P., Balas, V. E., & Zachariah, K. (2015). A content-based image retrieval system based on convex hull geometry. Acta Polytechnica Hungarica, 12 (1), 103–116.
- Merwe, J. V. D., Ferreira, H., & Clarke, W. (2005). Towards detecting man-made objects in natural environments for a man-made object mpeg-7 cbir descriptor-sandf application. In 16th annual symposium of the pattern recognition association of south africa (Vol. 1, p. 19).
- Mokhtarian, F., & Mackworth, A. K. (1992). A theory of multiscale curvature-based shape representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence(8), 789–805.
- Mokhtarian, F., & Suomela, R. (1998). Robust image corner detection through curvature scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence(12), 1376–1381.
- Monika, X., & Agnes, S. A. (2013). Survey on clustering based color image segmentation and novel approaches to fcm algorithm. International Journal of Research in Engineering and Technology , 23192322.
- Muller, S., & Rigoll, G. (1999). Improved stochastic modeling of shapes for content-based image retrieval. In Content-based access of image and video libraries, proceedings ieee workshop on (pp. 23–27).
- Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012). Local tetra patterns: A new fea- ture descriptor for content-based image retrieval. IEEE Transactions on Image Processing , 21 , 28742886. doi: https://doi.org/10.1109/TIP.2012.2188809
- Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 , 971-987. doi: https://doi.org/10.1109/TPAMI.2002
- .1017623
- Pass, G., & Zabith, R. (1996). Histogram refinement for content-based image retrieval. IEEE Workshop Application and Computer Vision, 96-102.
- Rao, A. S., Krishna, Y. K. S., & Krishna, V. V. (2015). Image retrieval based on structural statistical methods of texture. International Journal of Research Studies in Computer Science and Engineering , 2 , 80-87.
- Rao, K. L., Rao, V., & Reddy, L. P. (2016). Local mesh quantized extrema patterns for image retrieval. SpringerPlus, 5 . doi: https://doi.org/10.1186/s40064-016-2664-9
- Rasli, R. M., Muda, T. Z., Yusof, Y., & Juhaida, A. B. (2012). Comparative analysis of content based image retrieval techniques using color histogram: a case study of glcm and k-means clustering. In Intelligent systems, modelling and simulation, 3rd international conference on (pp. 283–286).
- Rui, M., & Cheng, H. D. A. (2009). Effective image retrieval using dominant color descriptor and fuzzy support vector machine. Pattern Recognition, 42 , 147-157. doi: https://doi.org/ 10.1016/j.patcog.2008.07.001
- Rui, Y., Huang, T. S., & Chang, S. F. (1999). Image retrieval: Current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation, 10 , 39-62. doi: https://doi.org/10.1006/jvci.1999.0413
- Ruiz, M. E. (2006). Combining image features, case descriptions and umls concepts to improve retrieval of medical images. In American medical informatics association annual symposium proceedings (Vol. 2006, p. 674).
- Shao, H., Wu, Y., Cui, W., & Zhang, J. (2008). Image retrieval based on mpeg-7 dominant color descriptor. In Young computer scientists, 2008. icycs 2008. the 9th international conference
- for (pp. 753–757).
- Shriram, K., Priyadarsini, P., & Baskar, A. (2015). An intelligent system of content-based image retrieval for crime investigation. International Journal of Advanced Intelligence Paradigms, 7 (3-4), 264–279.
- Shyu, C.-R., Kak, A., Brodley, C. E., & Broderick, L. S. (1999). Testing for human perceptual categories in a physician-in-the-loop cbir system for medical imagery. In Content-based access of image and video libraries, proceedings ieee workshop on (pp. 102–108).
- Smith, J. R., & Chang, S.-F. (1996). Tools and techniques for color image retrieval. In Storage and retrieval for still image and video databases iv (Vol. 2670, pp. 426–438).
- Soni, D., & Mathai, K. (2015). An efficient content based image retrieval system based on color space approach using color histogram and color correlogram. In Communication systems and network technologies, 5th international conference on (p. 488-492).
- Srivastava, D., Wadhvani, R., & Gyanchandani, M. (2015). A review : Color feature extrac- tion methods for content based image retrieval. International Journal of Computational Engineering and Management , 18 , 9-13.
- Stricker, M. A., & Orengo, M. (1995). Similarity of color images. Proc.SPIE , 2420 . doi: https://doi.org/10.1117/12.205308
- Sun, J., & Wu, X. (2006). Chain code distribution-based image retrieval. In Intelligent in- formation hiding and multimedia signal processing, ieee international conference on (pp. 139–142).
- Takala, V., Ahonen, T., & Pietikainen, M. (2005). Block-based methods for image retrieval using local binary patterns. In Scandinavian conference on image analysis (pp. 882–891).
- Talib, A., Mahmuddin, M., Husni, H., & George, E. (2013). A weighted dominant color de- scriptor for content-based image retrieval. Journal of Visual Communication and Image Representation, 24 , 345-360. doi: https://doi.org/10.1016/j.jvcir.2013.01.007
- Tan, X., & Triggs, B. (2007). Enhanced local texture feature sets for face recognition under difficult lighting conditions. In International workshop on analysis and modeling of faces and gestures (pp. 168–182).
- Tao, Y., & Grosky, W. I. (1999). Spatial color indexing: a novel approach for content-based image retrieval. In Multimedia computing and systems, ieee international conference on (Vol. 1, pp. 530–535).
- Tiwari, A., & Bansal, V. (2004). Patseek: Content based image retrieval system for patent database. In International council on english braille (pp. 1167–1171).
- Tiwari, A. K., Kanhangad, V., & Pachori, R. B. (2017). Histogram refinement for texture descriptor based image retrieval. Signal Processing: Image Communication, 53 , 73-85. doi: 10.1016/j.image.2017.01.010
- Torquato, S., & Lu, B. (1993). Chord-length distribution function for two-phase random media.
- Physical Review E , 47 (4), 2950.
- Tuanase-Avuatavului, M. (2005). Shape decomposition and retrieval (Unpublished doctoral dissertation). Utrecht University.
- Tyagi, V. (2017). Content based image retrieval ideas influences and current trends. Springer Nature Singapore Pte Ltd.
- Vagner, M. G., Delamaro, M. E., & Nunes, F. L. (2017). Applying graphical oracles to evaluate image segmentation results. Journal of the Brazilian Computer Society , 23 . doi: https:// doi.org/10.1186/s13173-016-0050-7
- Vipparthi, S. K., & Nagar, S. K. (2014). Color Directional Local Quinary Patterns for Content Based Indexing and Retrieval. Human-centric Computing and Information Sciences, 4 (1), 1-13. doi: 10.1186/s13673-014-0006-x
- Vrochidis, S. (2008). Patent image retrieval. In Information retrieval facility symposium.
- Walia, E., Saigal, P., & Pal, A. (2014). Enhanced linear block algorithm with improved similarity measure. In 27th canadian conference on electrical and computer engineering (p. 1-7).
- Wang, Y., Huang, K., & Tan, T. (2007). Human activity recognition based on r transform. In
- Ieee conference on computer vision and pattern recognition (pp. 1–8).
- Wong, K. M., Po, L. M., & Cheung, K. W. (2006). Dominant color structure descriptor for image retrieval. Proceedings - International Conference on Image Processing , 365368. doi: https://doi.org/10.1109/ICIP.2007.4379597
- Xu, D., Yan, S., Tao, D., Lin, S., & Zhang, H.-J. (2007). Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval. IEEE Transactions on Image processing , 16 (11), 2811–2821.
- Yang, N.-C., Kuo, C.-M., Chang, W.-H., Lee, T.-H., et al. (2008). A fast method for dominant color descriptor with new similarity measure. Journal of Visual Communication and Image Representation, 19 (2), 92-105.
- Yibing, M., Jiang, Z., Zhang, H., Xie, F., Zheng, Y., Shi, H., & Zhao, Y. (2017). Breast histopathological image retrieval based on latent dirichlet allocation. IEEE Journal of Biomedical and Health Informatics , 21 , 11141123. doi: https://doi.org/10.1109/JBHI.2016
- .2611615
- Zhang, D., Lu, G., et al. (2001). A comparative study on shape retrieval using fourier descrip- tors with different shape signatures. In Proc. of international conference on intelligent multimedia and distance education (pp. 1–9).
- Zhang, L., Hu, Y., Li, M., Ma, W., & Zhang, H. (2004). Efficient propagation for face annota- tion in family albums. In Proceedings of the 12th annual acm international conference on multimedia (pp. 716–723).
- Zhou, W., Li, H., Sun, J., & Tian, Q. (2018). Collaborative Index Embedding for Image Retrieval.
- IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (5), 1154-1166. doi: 10.1109/TPAMI.2017.2676779
- Zhou, W., Li, H., & Tian, Q. (2017). Recent advance in content-based image retrieval: A literature survey. arXiv preprint arXiv:1706.06064 .
- Zhou, X. S., Zillner, S., Moeller, M., Sintek, M., Zhan, Y., Krishnan, A., & Gupta, A. (2008).
- Semantics and cbir: a medical imaging perspective. In Proceedings of the international conference on content-based image and video retrieval (pp. 571–580).
- Zhu, L., Jin, H., Zheng, R., Zhang, Q., Xie, X., & Guo, M. (2011). Content-based design patent image retrieval using structured features and multiple feature fusion. In 6th international conference on image and graphics (pp. 969–974).