A Smartphone based Automated Primary Screening of Oral Cancer based on Deep Learning

##plugins.themes.academic_pro.article.main##

Rinkal Shah
Jyoti Pareek

Abstract

In low- and middle-income countries, oral cancer is becoming more common. One factor delaying the discovery of oral cancer in rural areas is a lack of resources. To stop the disease from spreading, it is essential to quickly obtain information about any cancers. Therefore, it is essential to carry out early identification before it spreads. Primary screening is maintained in this study. Furthermore, deep neural network-based automated methods were used to produce complex patterns to address the challenging issue of assessing oral cancer infection. The goal of this work is to develop an Android application that uses a deep neural network to categorize oral photos into four groups: erythroplakia, leukoplakia, ulcer, and normal mouth. Convolutional neural networks and K-fold validation processes are used in this study’s methodology to create a customized Deep Oral Augmented Model (DOAM). Data augmentation techniques including shearing, scaling, rotation, and flipping are used to pre-process the images. A convolutional neural network is then used to extract features from the images Optimal configurations of max pooling layers, dropout, and activation functions have resulted in the attainment of maximum accuracies. By using the ”ELU” activation function in conjunction with RMSProp as the optimizer, the model achieves 96% validation accuracy, 96% precision, 96% F1 score, and 68% testing accuracy. The model is then deployed in TensorFlow Lite using an Android application.

##plugins.themes.academic_pro.article.details##

How to Cite
Shah, R., & Pareek, J. (2024). A Smartphone based Automated Primary Screening of Oral Cancer based on Deep Learning. International Journal of Next-Generation Computing, 15(3). https://doi.org/10.47164/ijngc.v15i3.1786

References

  1. Badawy, M., Balaha, H. M., Maklad, A. S., Almars, A. M., and Elhosseini, M. A. 2023. Revolutionizing oral cancer detection: an approach using aquila and gorilla algorithms optimized transfer learning-based cnns. Biomimetics 8, 6, 499. DOI: https://doi.org/10.3390/biomimetics8060499
  2. Chowdhury, D., Das, A., Dey, A., Sarkar, S., Dwivedi, A. D., Rao Mukkamala, R., and Murmu, L. 2022. Abcandroid: a cloud integrated android app for noninvasive early breast cancer detection using transfer learning. Sensors 22, 3, 832. DOI: https://doi.org/10.3390/s22030832
  3. Das, M., Dash, R., and Mishra, S. K. 2023. Automatic detection of oral squamous cell carcinoma from histopathological images of oral mucosa using deep convolutional neural network. International Journal of Environmental Research and Public Health 20, 3, 2131. DOI: https://doi.org/10.3390/ijerph20032131
  4. Guo, J., Wang, H., Xue, X., Li, M., and Ma, Z. 2022. Real-time classification on oral ulcer images with residual network and image enhancement. IET Image Processing 16, 3, 641–646. DOI: https://doi.org/10.1049/ipr2.12144
  5. Haron, N., Rajendran, S., Kallarakkal, T. G., Zain, R. B., Ramanathan, A., Abraham, M. T., Lau, S. H., Cheng, L. C., Chong, S. M. Y., Mohamed Azahar, F. A., et al. 2023. High referral accuracy for oral cancers and oral potentially malignant disorders using telemedicine. Oral diseases 29, 2, 380–389. DOI: https://doi.org/10.1111/odi.13892
  6. Islam, M. M., Alam, K. R., Uddin, J., Ashraf, I., and Samad, M. A. 2023. Benign and malignant oral lesion image classification using fine-tuned transfer learning techniques. Diagnostics 13, 21, 3360. DOI: https://doi.org/10.3390/diagnostics13213360
  7. Lin, H., Chen, H., Weng, L., Shao, J., and Lin, J. 2021. Automatic detection of oral cancer in smartphone-based images using deep learning for early diagnosis. Journal of Biomedical Optics 26, 8, 086007–086007. DOI: https://doi.org/10.1117/1.JBO.26.8.086007
  8. Maqbool, B. and Herold, S. 2024. Potential effectiveness and efficiency issues in usability evaluation within digital health: A systematic literature review. Journal of Systems and Software 208, 111881. DOI: https://doi.org/10.1016/j.jss.2023.111881
  9. Mira, E. S., Sapri, A. M. S., Aljehanı, R. F., Jambı, B. S., Bashir, T., El-Kenawy, E.-S. M., Saber, M., et al. 2024. Early diagnosis of oral cancer using image processing and artificial intelligence. Fusion: Practice and Applications 14, 1, 293–308. DOI: https://doi.org/10.54216/FPA.140122
  10. Panigrahi, S., Nanda, B. S., Bhuyan, R., Kumar, K., Ghosh, S., and Swarnkar, T. 2023. Classifying histopathological images of oral squamous cell carcinoma using deep transfer learning. Heliyon 9, 3. DOI: https://doi.org/10.1016/j.heliyon.2023.e13444
  11. Smak Gregoor, A. M., Sangers, T. E., Bakker, L. J., Hollestein, L., Uyl-de Groot, C. A., Nijsten, T., and Wakkee, M. 2023. An artificial intelligence based app for skin cancer detection evaluated in a population based setting. NPJ digital medicine 6, 1, 90. DOI: https://doi.org/10.1038/s41746-023-00831-w
  12. Song, B., Kc, D. R., Yang, R. Y., Li, S., Zhang, C., and Liang, R. 2024. Classification of mobile-based oral cancer images using the vision transformer and the swin transformer. Cancers 16, 5, 987. DOI: https://doi.org/10.3390/cancers16050987
  13. Song, B., Sunny, S., Li, S., Gurushanth, K., Mendonca, P., Mukhia, N., Patrick, S., Gurudath, S., Raghavan, S., Imchen, T., et al. 2021. Mobile-based oral cancer classification for point-of-care screening. Journal of biomedical optics 26, 6, 065003–065003. DOI: https://doi.org/10.1117/1.JBO.26.6.065003
  14. Talwar, V., Singh, P., Mukhia, N., Shetty, A., Birur, P., Desai, K. M., Sunkavalli, C., Varma, K. S., Sethuraman, R., Jawahar, C., et al. 2023. Ai-assisted screening of oral potentially malignant disorders using smartphone-based photographic images. Cancers 15, 16, 4120. DOI: https://doi.org/10.3390/cancers15164120
  15. Tanriver, G., Soluk Tekkesin, M., and Ergen, O. 2021. Automated detection and classification of oral= lesions using deep learning to detect oral potentially malignant disorders. Cancers 13, 11, 2766. DOI: https://doi.org/10.3390/cancers13112766
  16. Wang, W., Liu, Y., and Wu, J. 2023. Early diagnosis of oral cancer using a hybrid arrangement of deep belief networkand combined group teaching algorithm. Scientific Reports 13, 1, 22073. DOI: https://doi.org/10.1038/s41598-023-49438-x
  17. Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., Jantana, P., and Vicharueang, S. 2022. Ai-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. Plos one 17, 8, e0273508. DOI: https://doi.org/10.1371/journal.pone.0273508
  18. Welikala, R. A., Remagnino, P., Lim, J. H., Chan, C. S., Rajendran, S., Kallarakkal, T. G., Zain, R. B., Jayasinghe, R. D., Rimal, J., Kerr, A. R., et al. 2020. Automated detection and classification of oral lesions using deep learning for early detection of oral cancer. Ieee Access 8, 132677–132693. DOI: https://doi.org/10.1109/ACCESS.2020.3010180
  19. Zhou, M., Jie, W., Tang, F., Zhang, S., Mao, Q., Liu, C., and Hao, Y. 2024. Deep learning algorithms for classification and detection of recurrent aphthous ulcerations using oral clinical photographic images. Journal of Dental Sciences 19, 1, 254–260. DOI: https://doi.org/10.1016/j.jds.2023.04.022