Machine Learning Classifier Model for Prediction of COVID-19

##plugins.themes.academic_pro.article.main##

Jhimli Adhikari

Abstract

COVID-19 pandemic has become a major threat to the world. In this study a model is designed which can predict the likelihood of COVID-19 patients with maximum accuracy. Therefore three machine learning classification algorithms namely Decision Tree, Naive Bayes and Logistic Regression classifier are used in this experiment to detect Covid-19 disease at an early stage. The models are trained with 75% of the samples and tested with 25% of data. Since the dataset is imbalanced, the performances of all the three algorithms are evaluated on various measures like F-Measure, Accuracy and Matthews Correlation Coefficient. Accuracy is measured over correctly and incorrectly classified instances. All the analyses were performed with the use of Python, version 3.8.2. Receiver Operating Characteristic (ROC) curves are used to verify the result in a proper and systematic manner. This framework can be used, among other considerations, to prioritize testing for COVID-19 when testing resources are limited.

##plugins.themes.academic_pro.article.details##

How to Cite
Jhimli Adhikari. (2021). Machine Learning Classifier Model for Prediction of COVID-19. International Journal of Next-Generation Computing, 12(1), 12–21. https://doi.org/10.47164/ijngc.v12i1.186

References

  1. A. Callahan, N. H. S. 2017. Machine learning in healthcare key advances in clinical informatics: Transforming health care through health information technology. Elsevier.
  2. A. Imran, I. Posokhova, H. N. Q. U. M. S. R. K. A. C. N. J. I. H. M. N. 2020. Ai4covid-19: Ai enabled preliminary diagnosis for covid-19 from cough samples via an app. Informatics in Medicine.
  3. A. Waheed, M. Goyal, D. G. A. K. F. A. P. R. P. 2020. Covidgan: Data augmentation using auxiliary classier gan for improved covid-19 detection. IEEE Access.
  4. A. Z. Khuzani, M. H. and Shariati, A. 2020. Covid-classier: An automated machine learning model to assist in the diagnosis of covid-19 infection in chest x-ray images. Preprint. medRxiv.2020..
  5. C. Iwendi, A. K. Bashir, A. P. R. S. J. M. C. S. P. R. M. S. P. O. J. 2020. Covid-19 patient health prediction using boosted random forest algorithm. Front. Public Health.
  6. Flach, P. 2012. Machine learning: The art and science of algorithms that make sense of data, intelligent systems laboratory. University of Bristol, UK, Cambridge University Press.
  7. J. D. Kelleher, B. M. Namee, A. D. 2015. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms. MIT Press.
  8. M. A. Ahmad, C. Eckert, A. M. 2018. Interpretable machine learning in healthcare. In Proceedings of ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. pp.559560.
  9. Matthews, B. 1975. Comparison of the predicted and observed secondary structure. Biochimica et biophysica acta 405, No.2, 442451. pmid:1180967.
  10. Md. M. Ahamad, S. Aktar, M. R. M. S. U. P. L. H. X. M. A. S. J. M. Q. M. A. M. A machine learning model to identify early stage symptoms of sars-cov-2 infected patients. Expert Syst Appl.
  11. P. Chowriappa, S. Dua, Y. T. 2013. Introduction to machine learning in healthcare informatics. Intelligent Systems Reference Library book series ISRL, volume 56.
  12. R. Sujath, J. M. Chatterjee, A. E. H. 2020. A machine learning forecasting model for covid-19 pandemic in india. Stoch Environ Res Risk Assess 34, Springer, 959-972.
  13. S. Boughorbel, F. Jarray, M. E.-A. 2017. Optimal classier for imbalanced data using matthews correlation coecient metric. PLOS ONE.
  14. S. Daskalaki, I. Kopanas, N. A. 2006. Evaluation of classiers for an uneven class distribution problem. Applied articial intelligence.