An Intelligent Healthcare System for Automated Alzheimer’s Disease Prediction and Personalized Care

##plugins.themes.academic_pro.article.main##

Tawseef Ayoub Shaikh
WASEEM AHMAD MIR
Izharuddin Mohammad
Rashid Ali

Abstract

Alzheimer’s disease has posed the greatest threat among all the different types of neurodegenerative problems as it has assaulted humankind at quick pace than the others. Its manual revelation has become clinically insignificant because of the in expertise, high rate of false positives (FP) and false-negatives (FN). To reduce the false positive/ false negative rate, this paper frames a quick, affordable, and objective judgement of AD with a novel data mining method coalescing a global Maximum Relevance and Minimum Redundancy (MRMR) based filter heuristic with a globally optimised wrapper heuristic GANNIGMA with the intention of minimalising the consequence of an imbalanced healthcare dataset. The optimal feature subset yielding the best performance are utilised for model training of Decision Tree, k-NN, and SVM algorithms. The trial results on benchmark ADNI dataset using the proposed model displayed the Decision Tree attains TP rate of 0.778, and AUC of 0.798, k-NN acquires 0.764 TP Rate and 0.784 AUC, and SVM attains 0.997 TP Rate, and 0.996 as AUC. The results are far healthier than the separate results of these algorithms attained on the same dataset with fewer optimal feature subsets.

##plugins.themes.academic_pro.article.details##

How to Cite
Tawseef Ayoub Shaikh, WASEEM AHMAD MIR, Izharuddin Mohammad, & Rashid Ali. (2021). An Intelligent Healthcare System for Automated Alzheimer’s Disease Prediction and Personalized Care. International Journal of Next-Generation Computing, 12(2), 240–253. https://doi.org/10.47164/ijngc.v12i2.196

References

  1. ADELI, H., GHOSH-DASTIDAR, S., AND DADMEHR N., 2008. A Spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neuroscience Letters 444, 190–194.
  2. ALZHEIMER’S ASSOCIATION. 2018. 2018 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 14 (3), 367– 429.
  3. AMEZQUITA SANCHEZ, J. P., ADELI, A., AND ADELI, H., 2016. A new methodology for automated diagnosis of mild cognitive impairment (MCI) using magneto encephalography (MEG). Behavioural Brain Research 305, 174–180.
  4. ANGUILAR, C., WESTMAN, E., MUEHLBOECK, J.S., MECOCCI, P., VELLAS, B., AND TSOLASKI, M., 2013. Different multivariate techniques for automated classi?cation of MRI data in Alzheimer’s disease and mild cognitive impairment. Psychiatry Res. 212, 89–98.
  5. APOSTOLVOA, L.G., HWANG, K.S., ANDRAWIS, J.P., GREEN, A. E., BABAKCHANIAN, S., MORRA, J.H., CUMMINGS, J.L., TOGA, A.W., TOGA, TROJANOWSKI, J.Q., SHAW, L.M., JR, C.R. J., PETERSEN, R.C., AISEN, P.S., JAGUT, W.J., KOEPPE, R.A., MATHIS, C.A., WEINER, M.W., AND THOMPSON, P.M., 2010. 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiology 31, 1284–1303.
  6. BANDAY, S.A., AND MIR, A.H., 2016. Statistical textural feature and deformable model-based brain tumor segmentation and volume estimation. Multimedia tools and applications 76, 3809–3828.
  7. BEHESTI, I., DEMIRELE, H., AND ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE., 2015. Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Computers in Biology and Medicine 64, 208-216.
  8. CARBALLIDO GAMIO, J., BONARETTI, S., KAZAKIA, G. J., KHOSLA, S., MAJUMDAR, S., LANG, T. F., AND BURGHARDT, A. J., 2017. Statistical parametric mapping of HR-pQCT images: A tool for population-based local comparisons of micro-scale bone features. Ann. Biomed. Eng. 45, 949–962.
  9. CASSANI, R., FALK, T. H., FRAGA, F. J., CECCHI, M., MOORE, D. K., AND ANGHINAH, R., 2017. Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomedical Signal Processing and Control. 33, 261–271.
  10. DAI, Z., YAN, C., WANG, Z., WANG, J., XIA, M., LI, K. AND HE, Y., 2012. Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterisation with multi-classifier (M3). NeuroImage 59, 2187–2195.
  11. DING, Y., ZHANG, C., LAN, T., QIN, Z., ZHANG, X., AND WANG. W., 2015. Classification of Alzheimer’s Disease Based on the Combination of Morphometric Feature and Texture Feature. In Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washginton D.C., USA, 409-412.
  12. FAN, Y., RESNICK, S.M., WU., X., AND DAVATZIKOS, C., 2008. Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classi?cation study. Neuroimage 41, 277–285.
  13. FISCON, G., WEITSCHEK, E., FELICI, G., BERTOLAZZI, P., SALVO, S. D., BRAMANTI, P., AND COLA, M. C. D., 2014. Alzheimer’s disease patients classi?cation through EEG signals processing. In Proceedings of IEEE Symposium on Computational Intelligence and Data Mining (CIDM), Orlando, FL 105-112.
  14. GAUDIUSOA, R., EWUSI-ANNAN, E., XIAB, W., AND MELIKECHIA, N., 2020. Diagnosis of Alzheimer’s disease using laser-induced breakdown spectroscopy and machine learning. Spectrochimica Acta 171, 105931.
  15. GHORBANIAN, P., DEVILBISS, D. M., SIMON, A. J., BERNSTEIN, A., HESS, T., AND ASHRAFIUON, H., 2012. Discrete Wavelet Transform EEG Features of Alzheimer’s Disease in Activated States. In Proceedings of 34th Annual International Conference of the IEEE EMBS San Diego, California USA, 2937-2940.
  16. GHORBANIAN, P., DEVILBISS, D. M., HESS, T., BERNSTEIN, A., SIMON, A. J., AND ASHRAFIUON, H., 2015. Exploration of EEG features of Alzheimer’s disease using continuous wavelet transform. Med Biol Eng Comput 53, 843–855.
  17. GRANA, M., TERMENON, M., SAVIO, A., GONZALEZ PINTO, A., ECHEYESTE, J., AND PEREZ, J., 2011. Computer Aided Diagnosis system for Alzheimer Disease using brain Diffusion Tensor Imaging features selected by Pearson’s correlation. Neurosci. Lett. 502, 225–229.
  18. HANYU, H., SATO, T., HIRAO, K., KANETAKA, H., IWANMOTO, T., AND KOIZUMI, K., 2010. The progression of cognitive deterioration and regional cerebral blood ?ow patterns in Alzheimer’s disease: a longitudinal SPECT study. J. Neurol. Sci 290, 96–101.
  19. HEA, E., POWELL, D., GOLD, B.T., AND SCHMITT, F.A., 2012. Alzheimer’s disease in Down syndrome. European Journal of Neurodegenerative Diseases 1, 353–364.
  20. HINRICHS, C., SINGH, V., MUKHERJEE, L., XU, G., CHUNG, M.K., JOHNSON, AND ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE. 2011. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage, 55, 574-89.
  21. HINRICHS, C., SINGH, V., MUKHERJEE, L., XU, G., CHUNG, M.K., AND JOHNSON, S.C., 2009. Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage 48, 138–149.
  22. http://adni.loni.usc.edu/ [Last accessed 10-11-2020].
  23. HSU, C.N., HUANG, H.J., AND DIETRICH, S., 2002. The ANNIGMA-wrapper approach to fast feature selection for rneural nets. IEEE Trans. Syst. Man, Cybern. 32, 207–212.
  24. HUANG, K., AND AVIYENTE, S., 2008. Wavelet Feature Selection for Image Classi?cation. IEEE Transactions on Image Processing 17.
  25. HUDA, S., YEARWOOD, J., AND STRAINIERI, A., 2010. Hybrid wrapper-?lter approaches for input feature selection using maximum relevance and arti?cial neural network input gain measurement approximation (ANNIGMA). In Proceedings Of 4th Int. Conf. Netw. Syst. Secur., Banglore, India 442–449.
  26. JAIN, R., JAIN, N., AGGARWAL, A., AND HERMANTH, D. J., 2019. Convolutional neural network-based Alzheimer’s disease classification from magnetic resonance brain images. Cognitive Systems Research 57, 147–159.
  27. JENKINSON, M., BANNISTER, P., BRADY, M., AND SMITH, S., 2002. Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841.
  28. KOH, J. E.W., JAH MUNAH, V., PHAM, T.H., OH, S.L., CJACCIO, E. J., ACHARYA, U. R., YEONG, C. H., FABELL, M. K. M., RAHMAT, K., VIJAYANATHAN, A., AND RAMLIF, N., 2020. Automated detection of Alzheimer’s disease using bi-directional empirical model decomposition. Pattern Recognition Letters 135, 106–113.
  29. KUNCHEVA, L.I., AND PLUMPTON, C.O., 2010. Random subspace ensembles for fMRI classi?cation. IEEE Transactions on Medical Imaging 29, 531–542.
  30. LIU, M., ZHANG, D., SHEN, D., AND ALZHMEIR’S DISEASE NEUROIMAGING INITIATIVE., 2012. Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60, 1106–1116.
  31. MAGNIN, B., MESROB, L., KINKINGNEHUN, S., PELEGRINI ISSAC, M., COLLIOT, O., SARAZIN, M., DUBOIS, B., LEHERICY, S., AND BENALI, H., 2009. Support vector machine-based classi?cation of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51, 73–83.
  32. MAITRA, M., AND CHATTERJEE, A., 2006. A Slantlet transform based intelligent system for magnetic resonance brain image classification. Biomedical Signal Processing and Control 1, 299–306.
  33. MAMMADOV, M., RUBINOV, A., AND YEARWOOD, J., 2005. Dynamical Systems Described by Relational Elasticities with Applications. Continuous Optimisation: Current Trends and Applications, 365–387.
  34. MAMMADOV, M. A., 2004. A new global optimisation algorithm based on a dynamical systems approach. In Proceedings of Int. Conf. Optim., Tech. Appl. (ICOTA), Ballarat, VIC, Australia, 1–11.
  35. MCCRACKIN, L., 2018. Early Detection of Alzheimer’s Disease Using Deep Learning. In Proceedings of Canadian AI, Toronto, Ontario at York University, LNAI 10832, 355–359.
  36. MIRZAEI, G., ADELI, A., AND ADELI, H., 2016. Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Rev. Neurosci 27, 857– 870.
  37. NIAZI, M., KARAMAN, M., DAS, S., ZHOU, X. J., YUSHKEVICH, P., AND CAI, K., 2018. Quantitative MRI of perivascular spaces at 3T for early diagnosis of mild cognitive impairment. AJNR Am. J. Neuroradiol. 39, 1622–1628.
  38. NISBET, R., MINER, G., AND YALE, K., 2018. Model Evaluation and Enhancement. In Handbook of Statistical Analysis and Data Mining Applications, ACADEMIC PRESS, 215-233, ISBN 9780124166325.
  39. OSSENKOPPELE, R., 2015. Prevalence of Amyloid PET Positivity in Dementia Syndromes A Meta-analysis. Journal of American Medical Association 313, 1939–1949.
  40. PAPAKOSTAS, G.A., SAVIO, A., GRANA, M., AND KABURLASOS, V.G., 2015. A lattice computing approach to Alzheimer’s disease computer-assisted diagnosis based on MRI data. Neurocomputing 150, 37–42.
  41. PENG, H., DING, C., AND LONG, F., 2005. Minimum redundancy feature selection from microarray gene expression data. IEEE Intell. Syst., 3, 70–71.
  42. PICH, M., 2014. Imaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology. Alzheimer’s Res. Ther. 6, 1-7.
  43. SADO, M., NINOMIYA, A., SHIKIMOTO, R., IKEDA, B., BABA, T., YOSHIMURA, K., AND MIMURA, M., 2018. The estimated cost of dementia in Japan, the most aged society in the world. PLoS One 13, 1-13.
  44. SEELEY, M., CHRISTOPHE, M. C., SNELL, Q., BODILY, P., AND FUJIMOTO, S., 2014. A Structured Approach to Ensemble Learning for Alzheimer’s Disease Prediction. In Proceedings of BCB’14, Newport Beach, CA, USA. ACM, 605-613.
  45. SEGOVIA, F., GORRIZ, J.M., RAMIREZ, J., SALAS GONZALEZ, D., ALVAREZ, AND I., 2013. Early diagnosis of Alzheimer’s disease based on Partial Least Squares and Support Vector Machine. Expert Systems with Applications 40, 677–683.
  46. SHAIKH, T.A., AND ALI, R., 2019. Automated atrophy assessment for Alzheimer’s disease diagnosis from brain MRI images. Magnetic Resonance Imaging 62, 167-173.
  47. SMITH, S.M. 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155.
  48. SUK, H. I., LEE, S. W., SHEN, D., AND ALZHIEMER’S DISEASE NEUROIMAGING INITIATIVE, 2014. Hierarchical feature representation and multi-modal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569– 582.
  49. The top 10 causes of death. World Health Organization, 2018, Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10causes-of-death.
  50. WALHOVD, K. B., FJELL, A.M., BREWER, J., MCEVOY, L.K., NOTESTINE. F., HAGLER, D.J., JENNINGS, R.G., KAROW, D., AND DALE, A.M., 2010. Combining MR imaging, positron emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. Am. J. Neuroradiol 31, 347–354.
  51. WANG, T., QIU, R.G., AND YU., M., 2018. Predictive modelling of the progression of Alzheimer’s disease with recurrent neural networks. Science Reports 8, 1-12.
  52. WESTMAN, E., MUEHLBOECK, J.S., AND SIMMONS, A., 2012. Combining MRI and CSF measures for classi?cation of Alzheimer’s disease and prediction of mild cognitive impairment conversion. Neuroimage 62, 229–238.
  53. WOOLRICH, M.W., RIPLEY, B.D., BRADY, M., AND SMITH, S.M., 2001. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386.
  54. YOUNG, J., MODAT, M., CARDOSO, M. J., ASHBURNER, J., AND OURSELIN, S., 2012. Classification of Alzheimer’s disease patients and controls with Gaussian process. In Proceedings of 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona pp. 1523-1526.
  55. ZHOA, Y., AND HE, L., 2015. Deep Learning in the EEG Diagnosis of Alzheimer’s Disease. In Proceedings of ACCV 2014 Workshops, Singapore, 2015, Part I, LNCS 9008, Springer, 340–353.