Review on Heart Disease Diagnosis Using Deep Learning Methods

##plugins.themes.academic_pro.article.main##

Trupti Vasantrao Bhandare
Selvarani Rangasamy

Abstract

Developments for automation and advanced computing in the area of medical data processing has outcome with different new learning techniques. Deep learning has evolved as an advanced approach in machine learning applied to different old and new area of applications. Deep learning approaches have evolved as supervised, semi-supervised and un-supervised mode applied for different real time applications. The approach has shown a significant usage for image processing, computer vision, medical diagnosis, robotic and control operation application. Among various usage of machine learning approaches for automation, medical diagnosis has been observed as a new upcoming application. The criticality of data processing, response time, and accuracy in decision, tends the learning system more complex in usage for medical diagnosis. This paper outlines the developments made in the area of medical diagnosis and deep learning application for heart disease diagnosis. The application, database and the learning system used in the automation process is reviewed and outlined the evolution of deep learning approach for medical data analysis.

##plugins.themes.academic_pro.article.details##

How to Cite
Trupti Vasantrao Bhandare, & Selvarani Rangasamy. (2021). Review on Heart Disease Diagnosis Using Deep Learning Methods. International Journal of Next-Generation Computing, 12(2), 91–102. https://doi.org/10.47164/ijngc.v12i2.206

References

  1. Aditya A. Shinde, Sharad N. Kale, R. M. S. A. S. N. S. A. G. 2017. Heart disease prediction system using multilayered feed forward neural network and back propagation neural network. International Journal of Computer Applications, Volume 166 - Number 7.
  2. Albuquerque V H C D, Nunes T M, P. D. R. e. a. 2018. Robust automated cardiac arrhythmia detection in ecg beat signals. Neural Computing Applications. 29(3):1-15.
  3. Anthimopoulos M, Christodoulidis S, E. L. e. a. 2016. Lung pattern classication for interstitial lung diseases using a deep convolutional neural network. IEEE transactions on medical imaging. 35(5): 1207-1216.
  4. Bai W, Oktay O, S. M. e. a. 2017. Semi-supervised learning for network-based cardiac mr image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2017: 253-260.
  5. Baumgartner C F, Koch L M, P. M. e. a. 2017. An exploration of 2d and 3d deep learning techniques for cardiac mr image segmentation. International Workshop on Statistical Atlases and Computational Models of the Heart. Springer, Cham. 2017: 111-119.
  6. Caffe. 1999. online available http://cae.berkeleyvision.org/.CDC. 2013. Centers for disease control and prevention
  7. http://www.cdc.gov/heartdisease/docs/consumeredheartdisease:pdf:
  8. Chang Y, Song B, J. C. e. a. 2018. Automatic segmentation and cardiopathy classication in cardiac mri images based on deep neural networks. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018: 1020-1024.
  9. Chaurasia, V. and Pal, S. 2014. Data mining approach to detect heart diseases. International Journal of Advanced Computer Science and Information Technology (IJACSIT) Vol. 2, No. 4. Page: 56-66, ISSN: 2296-1739.
  10. D. J. Newman, S. Hettich, C. L. B. and Merz, C. J. 2018. Uci repository of machine learning databases, university california irvine, department of information and computer science. Geneva:World Health Organization.
  11. D. R. Chowdhury, M. C. and Samanta, R. K. 2011. An articial neural network model for neonatal disease diagnosis. Int. J. Artif. Intell. Expert Syst. vol. 2, no. 3, pp. 96-106.
  12. E. J. Benjamin, S. S. Virani, C. W. C. A. R. C. S. C. S. E. C. M. C. and Delling, F. N. 2018. Heart disease and stroke statistics-2018 update: a report from the american heart association. Circulation, Vol. 137, No. 12, pp. 67- 492.
  13. E. O. Olaniyi, O. K. Oyedotun, A. H. and Adnan, K. 2015. Neural network diagnosis of heart disease. International Conference Advances in Biomedical Engineering (ICABME). pp. 21-24.
  14. F. Amato, A. Lopez, E. M. P.-M. P. V. A. H. and Havel, J. 2013. Articial neural networks in medical diagnosis. Elsevier.
  15. G. Subbalakshmi, K. R. and Rao, M. C. 2011. Decision support in heart disease prediction system using naive bayes. Indian J. Comput. Sci. Eng., vol. 2, no. 2. pp. 170-176.
  16. Gan Y, Tsay D, A. S. B.-e. a. 2016. Automated classication of optical coherence tomography images of human atrial tissue. Journal of biomedical optics. 21(10): 101407.
  17. Gao X, Li W, L. M. e. a. 2017. A fused deep learning architecture for viewpoint classication of echocardiography. Information Fusion. 36: 103-113.
  18. Gao Z, Xiong H, L. X. e. a. 2017. Robust estimation of carotid artery wall motion using the elasticity-based state-space approach. Medical image analysis. 37: 1-21.
  19. Gao Z Zhao S, Gao Z, Z. H. e. a. 2017. Robust segmentation of intima{media borders with dierent morphologies and dynamics during the cardiac cycle. IEEE journal of biomedical and health informatics. 22(5): 1571-1582.
  20. Ghaemmaghami H, Hussain N, T. K. e. a. 2017. Automatic segmentation and classication of cardiac cycles using deep learning and a wireless electronic stethoscope. IEEE Life Sciences Conference (LSC). 2017: 210-213.
  21. He K, Zhang X, R. S. e. a. 2016. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
  22. Heartdiseasef actsheet:2015: Centers for disease control and prevention. https:www:cdc:gov=dhdsp=datastatistics=factsheets=fsheartdisease:htm:
  23. Isensee F, Jaeger P F, F. P. M. e. a. 2018. Fast and accurate view classication of echocardiograms using deep learning. NPJ digital medicine. 1(1): 6.
  24. J. Nahar, T. Imam, K. S. T. and Chen, Y.-P. P. 2013. Computational intelligence for heart disease diagnosis: A medical knowledge driven approach. Expert Syst. Appl., vol. 40, no. 1. pp. 104.
  25. Jaffer F A, Libby P, W. R. . 2009. Optical and multimodality molecular imaging: Insights into atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 29(7):1017-1024.
  26. Jain, Y. K. and Bhandare, S. K. 2011. Min max normalization based data perturbation method for privacy protection. Int. J. Comput. Commun. Technol., vol. 2, no. 8. pp. 45-50.
  27. Jansoi, A. 2018. Uci machine learning repository heart disease dataset.
  28. Jiang Z, Lin Z, D. L. S. 2013. Label consistent k-svd: Learning a discriminative dictionary for recognition. IEEE Transactions on Pattern Analysis Machine Intelligence. 35(11):2651-64.
  29. K. J. Xia, H. S. Yin, J. Q. W. 2018. A novel improved deep convolutional neural network model for medical image fusion. Cluster Computing. 3:1-13.
  30. KementrianKesehatan, R. I. 2013. Riset kesehatan dasar. Jakarta Kementerian.
  31. Khamparia A, Saini G, G. D. e. a. 2019. Seasonal crops disease prediction and classication using deep convolutional encoder network. Circuits, Systems, and Signal Processing.
  32. Kips J G, SegersP, B. L. M. V. 2008. Identifying the vulnerable plaque: A review of invasive and non-invasive imaging modalities. Artery Research. 2(1):21-34.
  33. Kotu L P, Engan K, B. R. e. a. 2015. Cardiac magnetic resonance image-based classication of the risk of arrhythmias in post-myocardial infarction patients. Articial intelligence in medicine. (3): 205-215.
  34. Krizhevsky A, Sutskever I, H. G. E. 2012. Imagenet classication with deep convolutional neural networks. Advances in neural information processing systems. 2012: 1097-1105.
  35. Lecun Y, Bengio Y., H. G. 2015. Deep learning. MAcMillan Nature vol 521.
  36. M. Shouman, T. T. and Stocker, R. 2011. Using decision tree for diagnosing heart disease patients. Proceedings of the 9th Australasian Data Mining Conference. pp. 23{29, Ballarat, Australia.
  37. MacNeill, B. D. 2003. Intravascular modalities for detection of vulnerable plaque: Current status. arteriosclerosis, thrombosis, and vascular biology. 23(8):1333-1342.
  38. Madani A, Arnaout R, M. M. e. a. 2018. Fast and accurate view classication of echocardiograms using deep learning. NPJ digital medicine. 1(1): 6.
  39. Marateb, H. R. and Goudarzi, S. 2015. A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule based system. Journal of Research in Medical Sciences, Vol. 20, No. 3. pp. 214-223.
  40. Miao, J. H. and Miao, K. H. 2018. Cardiotocographic diagnosis of fetal health based on multiclass morphologic pattern predictions using deep learning classication. International Journal of Advanced Computer Science and Applications, Vol. 9, No. 5. pp. 1-11.
  41. Miao S, Wang Z J, L. R. 2015. A convolutional neural network approach for 2d/3d medical image registration. CoRR abs/1507.07505.
  42. N. A. Sundar, P. P. L. and Chandra, M. R. 2012. Performance analysis of classication data mining techniques over heart disease database. IJESAT] Int. J. Eng. Sci. Adv. Technol. ISSN, pp. 2250-3676.
  43. N. Larasati, T. D. and Oktarina, Y. 2017. Object following design for a mobile robot using neural network. Comput. Eng. Appl. J., vol. 6, no. 1. pp. 5-14.
  44. Nabel, E. G. and Braunwald, E. 2012. A tale of coronary artery disease and myocardial infarction. New England Journal of Medicine, Vol. 366. pp. 54-63.
  45. NHLBI. 1999. Coronary heart disease https://www.nhlbi.nih.gov/health-topics/coronary-heartdisease.
  46. Nues, T. M. and hugo C., V. 2013. Automatic microstructural characterization and classication using articial intelligence techniques on ultrasound signals. Expert Systems with Applications (8):3096-3105.
  47. Oktay O, Ferrante E, K. K. e. a. 2017. Anatomically constrained neural networks (acnns): application to cardiac image enhancement and segmentation. IEEE transactions on medical imaging. 37(2): 384-395.
  48. P.-T. De Boer, D. P. Kroese, S. M. and Rubinstein, R. Y. 2005. A tutorial on the cross-entropy method. Ann. Oper. Res., vol. 134. pp. 19{67.
  49. Poudel R P K, Lamata P, M. G. 2016. Recurrent fully convolutional neural networks for multi-slice mri cardiac segmentation reconstruction, segmentation, and analysis of medical images. Springer, Cham. 2016: 83-94.
  50. Pytorch. 1999. Online available https://pytorch.org/.
  51. Rohe M M, Datar M, H. T. e. a. 2017. Svf-net: Learning deformable image registration using shape matching. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham. 2017: 266-274.
  52. Ronaghan, S. 1999. Deep learning: Which loss and activation functions should i use? https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-shouldi-use-ac02f1c56aa8.
  53. S. Nurmaini, A. G. 2018. Cardiac arrhythmias classication using deep neural networks and principle component analysis algorithm. Int. J. Adv. Soft Comput. Its Appl., vol. 10.
  54. Schmidhuber, J. 2015. Deep learning in neural networks: An overview. Neural Networks, Vol. 61. pp. 85-117.
  55. Simonyan K, Z. A. 2014. Very deep convolutional networks for large-scale image recognition. arXivpreprint. arXiv: 1409.1556.
  56. Szegedy C, Liu W, J. Y. e. a. 2015. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition. 2015: 1-9.
  57. Tensorflow. 1999. Online available https://tensorow.org/.
  58. Vardhana M, Arunkumar N, L. S. e. a. 2018. Convolutional neural network for bio-medical image segmentation with hardware acceleration. Cognitive Systems Research. 50: 10-14.
  59. WHO. 2017a. Cardiovascular diseases (cvd).
  60. WHO. 2017b. World health statistics 2017: monitoring health for the sdgs, sustainable development goals.
  61. WHO. 2018. World health statistics 2018: monitoring health for the sdgs, sustainable development goals. Geneva: World Health Organization Licence: CC BY-NC-SA 3.0 IGO.
  62. Wong K K L, Tu J, S. Z. 2013. Methods in research and development of biomedical devices.
  63. WORLD SCIENTIFIC.
  64. Xiao Z, Huang R, D. Y. e. a. 2017. A deep learning-based segmentation method for brain tumor in mr images. IEEE, International Conference on Computational Advances in Bio and Medical Sciences. 2017:1-6.
  65. Xu L, Huang X, M. J. e. a. 2017. Value of three-dimensional strain parameters for predicting left ventricular remodeling after st-elevation myocardial infarction. The International Journal of Cardiovascular Imaging. 33(5):663-673.
  66. Y. Lei, N. Scheffer, L. F. and McLaren, M. 2014. A novel scheme for speaker recognition using a phonetically-aware deep neural network. IEEE International Conference Acoustics, Speech and Signal Processing (ICASSP). pp. 1695-1699.
  67. Y. Zheng, Q. Liu, E. C. Y. G. and Zhao, J. L. 2014. Time series classication using multichannels deep convolutional neural networks. International Conference on Web-Age Information Management. pp. 298-310.
  68. Z. Xing, J. P. and Keogh, E. 2010. A brief survey on sequence classication. ACM Sigkdd Explor. Newsl., vol. 12, no. 1. pp. 40-48.
  69. Zhen X, Zhang H, I. A. e. a. 2017. Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression. Medical image analysis. 36: 184-196.
  70. Zheng M, Bu J, C. C. e. a. 2011. Graph regularized sparse coding for image representation. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society. (5):1327.