A systematic review of Machine learning techniques for Heart disease prediction
##plugins.themes.academic_pro.article.main##
Abstract
One of the most common disease today is Heart Disease,and early diagnosis of such disease is very challenging. Machine learning includes artificial intelligence, which is implemented to solve a number of data science problems. The prediction of outcomes based on existing data is a common machine learning application.Different data mining strategies for the prediction of heart disease have been proposed with varying degrees of effectiveness and accuracy. In this paper, author provide an in-depth literature survey on systems for predicting risk of heart disease.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Shivganga Udhan, & Bankat Patil. (2021). A systematic review of Machine learning techniques for Heart disease prediction. International Journal of Next-Generation Computing, 12(2), 229–239. https://doi.org/10.47164/ijngc.v12i2.208
References
- Abdullah A.S & R. R. Rajalaxmi, “A data mining model for predicting the coronary heart disease using random forest classifier,” in Proc. Int. Conf. Recent Trends Comput. Methods, Commun. Controls, Apr. 2012, pp. 22-25.
- Ansari A.Q.,” Automated Diagnosis of Coronary Heart Disease Using Neuro-Fuzzy Integrated System”, 2011 World Congress on Information & Communication Technologies 978-1-4673- 0125- 1@ 2011 IEEE (pp 1383-1388).
- Ansari JyotiSoni Ujma, Sharma Dipesh. Predictive data mining for medical diagnosis: an overview of heart disease predictionII. Int. J. Comput. Appl. March 2011;17(8). (0975 – 8887).
- Apte & S.M. Weiss, Data Mining with Decision Trees & Decision Rules, T.J. Watson Research Center, http://www.research.ibm.com/dar/papers/pdf/fgcsaptewe issue with cover.pdf, (1997).
- Bhatla Nidhi, Kiran Jyoti, “A Novel Approach for Heart Disease Diagnosis using Data Mining & Fuzzy Logic”, International Journal of Computer Applications, Volume 54– No.17, (pp 16-21), September 2012, ISSN 0975 – 8887.
- Boshra Bahrami, Mirsaeid Hosseini Shirvani,“Prediction & Diagnosis of Heart Disease by Data Mining Techniques”, Journal of Multidisciplinary Engineering Science & Technology (JMEST) ISSN: 3159-0040 Vol. 2 Issue 2, February – 2015.
- Can Xiao ,Yi Li, Yimin Jiang (2020), Heart coronary artery segmentation & disease risk warning based on a deep learning algorithm DOI10.1109/ACCESS.2020.3010800, ISBN: 2169- 3536, IEEE.
- Carlos Ordonez Teradata, “Association Rule Discovery with the Train & Test Approach for Heart Disease Prediction”, Published in Transactions on Information Technology in Biomedicine (TITB Journal). 10(2):334-343, 2006.
- Chauhan Shraddha, Aeri Bani T. The rising incidence of cardiovascular diseases in India: assess- ing its economic impact. J. Prev. Cardiol. 2015;4(4):735–40.
- Dangare Chaitrali S., Sulabha S. Apte , “Improved Study of Heart Disease Prediction System using Data Mining Classification Techniques”, International Journal of Computer Applica- tions (IJCA) (0975 – 8887), Vol. 47, No. 10, June 2012 (pp 44-48).
- Das Resul, Ibrahim Turkoglu , Abdulkadir Sengur,“Effective diagnosis of heart disease through neural networks ensembles.” Expert Systems with Applications 36 (2009) 7675–7680.
- Domse kanchan B & Mahale kishor M. et al “Study of Machine Learning Algorithms for Special Disease Prediction using principal of component analysis” 2016 international Conference on Global Trends in Signal processing, information computing & communication.
- D’Souza Andrea,“Heart Disease Prediction Using Data Mining Techniques Andrea “,International Journal of Research in Engineering & Science (IJRES) ,ISSN (Online): 2320-9364, Volume 3 Issue 3 , March. 2015 , PP.74-77.
- E. Avci, “A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier”, Expert Systems with Applications, Elsevier, vol. 36, (2009), pp. 10618-10626.
- Fida Benish, Nazir Muhammad, Naveed Nawazish, Akram Sheeraz. Heart disease classification ensemble optimization using genetic algorithm. IEEE; 2011. p. 19–25.
- Gavhane A., G. Kokkula, I. Pandya, & K. Devadkar, “Prediction of heart disease using machine learning,” in Proc. 2nd Int. Conf. Electron.,Commun. Aerosp. Technol. (ICECA), Mar. 2018, pp. 1275-1278.
- Gupta Aanshi, ShubhamYadav, ShaikShahid, Venkanna U,(2019), HeartCare: IoT based heart disease prediction system DOI: 10.1109/ICIT48102.2019.00022, ISBN: 978-1-7281-6052- 8, IEEE.
- Halima EL HAMDAOUI, Sa¨?d BOUJRAF , Nour El Houda CHAOUI ,Mustapha MAAROUFI A Clinical support system for Prediction of Heart Disease using Machine Learning 10.1109/ATSIP49331.2020.9231760, ISBN: 978-1-7281-7513-3 ,IEEE.
- JafarJalali Seyed Mohammad, Mina Karimi , Abbas Khosravi ,Nahavandi(2019), An efficient Neuroevolution Approach for Heart Disease Detection DOI10.1109/SMC.2019.8913997, ISBN: 978-1-7281-4569-3, IEEE.
- KaanUyar Ahmet Ilhan. Diagnosis of heart disease using genetic algorithm based trained re- current fuzzy neural networks. 9th international conference on theory & application of soft computing, computing with words& perception. Budapest, Hungary: ICSCCW; 2017. 24-25 Aug 2017.
- Kaura Shivendra, AssemChandel ,Nitin Kumar Pal Heart disease-Sinus arrhythmia prediction system by neural network using ECG analysis DOI: 10.1109/PEEIC47157.2019.8976829 , ISBN: 978-1-7281-1793-5, IEEE.
- K.Prasanna Lakshmi, Dr.C.R.K.Reddy Fast Rule-Based Heart Disease Prediction using Associa- tive Classification Mining DOI: 10.1109/IC4.2015.7375725, ISBN: 978-1-4799-8164-9, IEEE.
- K. Sudhakar Study of heart disease prediction using data mining. 2014;4(1):1157–60.
- K Vanisree, Jyothi Singaraju. Decision support system for congenital heart disease diagnosis based on signs & symptoms using neural networks. Int J Comput Appl April 2011;19(6). (0975 8887).
- Liu Xiao, Wang Xiaoli, Su Qiang, Zhang Mo, Zhu Yanhong, Wang Qiugen, Wang Qian. A hybrid classification system for heart disease diagnosis based on the RFRS method. Comput. Math. Methods Med. 2017;2017:1–11.
- Mackay J, Mensah G. Atlas of heart disease & stroke. Nonserial Publication; 2004.
- Mahmood Ali Mirza , MrithyumjayaRaoKuppa Early Detection Of Clinical Parameters In Heart Disease By Improved Decision Tree Algorithm 10.1109/VCON.2010.12, ISBN: 978-1-4244- 9628-0, IEEE.
- M. ANBARASI, E. ANUPRIYA, N.CH.S.N.IYENGAR,“Enhanced Prediction of Heart Disease with Feature Subset Selection using Genetic Algorithm”, International Journal of Engineer- ing Science & Technology ,Vol. 2(10), 2010, 5370-5376.
- Masethe Hlaudi Daniel, Mosima Anna Masethe,“Prediction of Heart Disease using Classification Algorithms.” WCECS 2014, 22-24 October, 2014, San Francisco, USA. bibitem[label 1] Mackay M. Durairaj & V. Revathi, Prediction of heart disease using back propagationML- Palgorithm,” Int. J. Sci. Technol. Res., vol. 4, no. 8, pp. 235-239, 2015.
- M. Ganesan ,Dr.N.Sivakumar (2019), IoT based heart disease prediction & diagnosis model for healthcare using machine learning models DOI: 10.1109/ICSCAN.2019.8878850, ISBN: 978- 1-7281-1525-2, IEEE.
- Moloud Abdar, Sharareh R. Niakan Kalhori, Tole Sutikno, Imam Much Ibnu Subroto, Goli Arji, “Comparing Performance of Data Mining Algorithms in Prediction Heart Diseases.” Vol. 5, No. 6, December 2015.
- M. Silver, T. Sakara, H. C. Su, C. Herman, S. B. Dolins & M. J. O’shea, “Case study: how to apply data mining techniques in a healthcare data warehouse”, Healthc. Inf. Manage, vol. 15, no. 2, (2001), pp. 155-164.
- Patel Shamsher Bahadur , Pramod Kumar Yadav , Dr. D. P.Shukla, “Predict the Diagnosis of
- Heart Disease Patients Using Classification Mining Techniques”, IOSR Journal of Agricul- ture & Veterinary Science (IOSR-JAVS) e-ISSN: 2319- 2380, p-ISSN: 2319-2372.Volume 4, Issue 2 (Jul. - Aug. 2013), PP 61-64.
- Patil SB, Kumaraswamy YS. Extraction of significant patterns from heart disease warehouses for heart attack prediction. Int. J. Comput. Sci. Netw. Secur(IJCSNS) 2009;9(2):228–35.
- P Mamatha Alex & Shaicy P Shaji Prediction & Diagnosis of Heart Disease Patients using Data Mining Technique DOI: 10.1109/ICCSP.2019.8697977, ISBN: 978-1-5386-7595-3, IEEE.
- P Melillo, Izzo R, Orrico A, Scala P, Attanasio M, Automatic Prediction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analysis et al. (2015) Automatic Pre- diction of Cardiovascular and Cerebrovascular Events Using Heart Rate Variability Analy- sis. PLOS ONE 10(3): e0118504.
- R. kavitha & E kannan etal. “An efficient Framework for Heart Disease Classification using Feature Extraction & feature selection technique in Data mining” 2016
- Shan Xu ,Tiangang Zhu, Zhen Zang, Daoxian Wang, Junfeng Hu “Cardiovascular Risk prediction method based on CFS subset evaluation & random forest classification framework” 2017 IEEE 2ND International Conference on Big Data Analysis.
- Singh Manpreet, Levi Monteiro Martins, Patrick Joanis & Vijay “ Building a cardiovascular disease predictive model using structural equation model & fuzzy cognitive map”, 978-1- 5090- 0626-7/16/ 31.00 c 2016 IEEE.
- Tu¨lay Karayilan ,O¨ zkanKili¸c (2017), Prediction of Heart Disease Using Neural Network DOI:1109/UBMK.2017.8093512, ISBN: 978-1-5386-0930-9, IEEE.
- Vasighi Mahdi, Ali Zahraei, Bagheri Saeed, Vafaeimanesh Jamshid. Diagnosis of coronary heart disease based on Hnmr spectra of human blood plasma using genetic algorithm-based fea- ture selection. Wiley Online Library; 2013. p. 318-22.
- Xing Yanwei, Wang Jie, Yonghong Gao Zhihong Zhao. Combination data mining methods with new medical data to predicting outcome of Coronary Heart Disease. Convergence Informa- tion Technology. 2007. p. 868–72.
- Zeinulla Elzhan , Karina Bekbayeva , Adnan Yazici (201 Effective diagnosis of heart disease imposed by incomplete data based on fuzzy random forest DOI: 10.1109/FUZZ48607.2020.9177531, ISBN:978-1-7281-6932-3, IEEE.
- Ziasabounchi Negar, Iman Askerzade,“ ANFIS Based Classification Model for Heart Disease Prediction”, International Journal of Engineering & Computer Science IJECS-IJENS Vol:14 No:02, April 2014.
- ZubairHasan K. M. , ShourobDatta , MdZahidHasan , NusratZahan(2019),Automated Prediction of Heart Disease Patients using Sparse Discriminant Analysis 10.1109/ECACE.2019.8679279, ISBN: 978-1-5386-9111-3, IEEE. https://www.kaggle.com/abdelsamad/heart-disease-prediction- with-neural-networks