Paraphrase Generation: A Review from RNN to Transformer based Approaches
##plugins.themes.academic_pro.article.main##
Abstract
Paraphrasing is an act of generating similar text to the source text with different expressions. Paraphrase generation is an important task in various Natural Language Processing applications such as machine translation, question-answering, information re
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Singh, A., & Gurpreet Singh Josan. (2022). Paraphrase Generation: A Review from RNN to Transformer based Approaches. International Journal of Next-Generation Computing, 13(1). https://doi.org/10.47164/ijngc.v13i1.377
References
- Abujabal, A., Saha Roy, R., Yahya, M., and Weikum, G. 2019. ComQA: A community- sourced dataset for complex factoid question answering with paraphrase clusters. In Pro- ceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Minneapolis, Minnesota, 307–317.
- Agarwal, B., Ramampiaro, H., Langseth, H., and Ruocco, M. 2018. A deep network model for paraphrase detection in short text messages. Infmation Processing and Manage- ment 54, 922–937. DOI: https://doi.org/10.1016/j.ipm.2018.06.005
- Aggarwal, M., Kumari, N., Bansal, A., and Krishnamurthy, B. 2018. Redecode frame- work for iterative improvement in paraphrase generation. CoRR abs/1811.04454, 1–8.
- Bahdanau, D., Cho, K., and Bengio, Y. 2014. Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473, 1409.0473.
- Bannard, C. and Callison-Burch, C. 2005. Paraphrasing with bilingual parallel corpora. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05). Association for Computational Linguistics, Ann Arbor, Michigan, 597–604. DOI: https://doi.org/10.3115/1219840.1219914
- Bao, Y., Zhou, H., Feng, J., Wang, M., Huang, S., Chen, J., and Lei, L. 2019. Non- autoregressive transformer by position learning. ArXiv abs/1911.10677, 1–12.
- Bao, Y., Zhou, H., Huang, S., Li, L., Mou, L., Vechtomova, O., Dai, X.-y., and Chen, J. 2019. Generating sentences from disentangled syntactic and semantic spaces. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, 6008–6019. DOI: https://doi.org/10.18653/v1/P19-1602
- Barzilay, R., McKeown, K. R., and Elhadad, M. 1999. Information fusion in the context of multi-document summarization. In Proceedings of the 37th Annual Meeting of the Asso- ciation for Computational Linguistics. Association for Computational Linguistics, College Park, Maryland, USA, 550–557. DOI: https://doi.org/10.3115/1034678.1034760
- Berant, J. and Liang, P. 2014. Semantic parsing via paraphrasing. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Baltimore, Maryland, 1415–1425. DOI: https://doi.org/10.3115/v1/P14-1133
- Bhagat, R. and Hovy, E. 2013. What is a paraphrase? Computational Linguistics 39, 3, 463–472. DOI: https://doi.org/10.1162/COLI_a_00166
- Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. 2015. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empir- ical Methods in Natural Language Processing. Association for Computational Linguistics, Lisbon, Portugal, 632–642. DOI: https://doi.org/10.18653/v1/D15-1075
- Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., and Bengio, S. 2016. Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL Con- ference on Computational Natural Language Learning. Association for Computational Lin- guistics, Berlin, Germany, 10–21. DOI: https://doi.org/10.18653/v1/K16-1002
- Brad, F. and Rebedea, T. 2017. Neural paraphrase generation using transfer learning. In Pro- ceedings of the 10th International Conference on Natural Language Generation. Association for Computational Linguistics, Santiago de Compostela, Spain, 257–261. DOI: https://doi.org/10.18653/v1/W17-3542
- Cao, Z., Luo, C., Li, W., and Li, S. 2017. Joint copying and restricted generation for paraphrase. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press, San Francisco, California, USA, 3152–3158.
- Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robin- son, T. 2013. One billion word benchmark for measuring progress in statistical language modeling. In INTERSPEECH. arXiv preprint arXiv:1312.3005 (2013), 2635–2639. DOI: https://doi.org/10.21437/Interspeech.2014-564
- Chen, M., Tang, Q., Wiseman, S., and Gimpel, K. 2019. Controllable paraphrase generation with a syntactic exemplar. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, 5972–5984. DOI: https://doi.org/10.18653/v1/P19-1599
- Chen, Y.-C. and Bansal, M. 2018. Fast abstractive summarization with reinforce-selected sentence rewriting. In Proceedings of the 56th Annual Meeting of the Association for Com- putational Linguistics. ACL, Melbourne, Australia, 675–686. DOI: https://doi.org/10.18653/v1/P18-1063
- Cho, K., van Merrienboer, B., C¸ aglar Gu¨lc¸ehre, Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. 2014. Learning phrase representations using rnn encoder- decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em- pirical Methods in Natural Language Processing (EMNLP). ACL, Doha, Qatar, 1724–1734. Colin, E. and Gardent, C. 2018. Generating syntactic paraphrases. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for DOI: https://doi.org/10.3115/v1/D14-1179
- Computational Linguistics, Brussels, Belgium, 937–943.
- Demir, S., El-Kahlout, I. D., and Unal, E. 2013. A case study towards turkish paraphrase alignment. In Proceedings of the 14th European Workshop on Natural Language Generation. The Association for Computer Linguistics, Sofia, Bulgaria, 188–192.
- Dolan, B., Quirk, C., and Brockett, C. 2004. Unsupervised construction of large para- phrase corpora: Exploiting massively parallel news sources. In Proceedings of the 20th International Conference on Computational Linguistics. COLING, Geneva, Switzerland, 350–356. DOI: https://doi.org/10.3115/1220355.1220406
- Dong, L., Mallinson, J., Reddy, S., and Lapata, M. 2017. Learning to paraphrase for question answering. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Copenhagen, Denmark, 875–886. DOI: https://doi.org/10.18653/v1/D17-1091
- Egonmwan, E. and Chali, Y. 2019. Transformer and seq2seq model for paraphrase generation. In Proceedings of the 3rd Workshop on Neural Generation and Translation. Association for Computational Linguistics, Hong Kong, 249–255. DOI: https://doi.org/10.18653/v1/D19-5627
- Erk, K. and Pado´, S. 2008. A structured vector space model for word meaning in context. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. ACL, Honolulu, Hawaii, USA, 897–906. DOI: https://doi.org/10.3115/1613715.1613831
- Fader, A., Zettlemoyer, L., and Etzioni, O. 2013. Paraphrase-driven learning for open question answering. In Proceedings of the 51st Annual Meeting of the Association for Com- putational Linguistics. Association for Computational Linguistics, Sofia, Bulgaria, 1608– 1618.
- Fader, A., Zettlemoyer, L., and Etzioni, O. 2014. Open question answering over curated and extracted knowledge bases. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA, 1156–1165 DOI: https://doi.org/10.1145/2623330.2623677
- Ganitkevitch, J., Van Durme, B., and Callison-Burch, C. 2013. PPDB: The paraphrase database. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Atlanta, Georgia, 758–764.
- Gardent, C., Shimorina, A., Narayan, S., and Perez-Beltrachini, L. 2017. Creating training corpora for NLG micro-planners. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Vancouver, Canada, 179–188. DOI: https://doi.org/10.18653/v1/P17-1017
- Gehrmann, S., Deng, Y., and Rush, A. 2018. Bottom-up abstractive summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, 4098–4109. DOI: https://doi.org/10.18653/v1/D18-1443
- Gharavi, E., Bijari, K., Zahirnia, K., and Veisi, H. 2016. A deep learning approach to persian plagiarism detection. In Working notes of FIRE 2016 - Forum for Information Retrieval Evaluation. CEUR Workshop Proceedings, Kolkata, India, 154–159.
- Gu, J., Lu, Z., Li, H., and Li, V. O. 2016. Incorporating copying mechanism in sequence- to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Berlin, Germany, 1631–1640. DOI: https://doi.org/10.18653/v1/P16-1154
- Guo, Y., Liao, Y., Jiang, X., Zhang, Q., Zhang, Y., and Liu, Q. 2019. Zero-shot para- phrase generation with multilingual language models. ArXiv 1, 1–9.
- Gupta, A., Agarwal, A., Singh, P., and Rai, P. 2017. A deep generative framework for paraphrase generation. In In Thirty-Second AAAI Conference on Artificial Intelligence. CORR, Louisiana, USA, 5149–5156.
- Guu, K., Hashimoto, T. B., Oren, Y., and Liang, P. 2018. Generating sentences by editing prototypes. Transactions of the Association for Computational Linguistics 6, 437–450. DOI: https://doi.org/10.1162/tacl_a_00030
- Hasan, S. A., Liu, B., Liu, J., Qadir, A., Lee, K., Datla, V., Prakash, A., and Farri,
- O. 2016. Neural clinical paraphrase generation with attention. In Proceedings of the Clini- cal Natural Language Processing Workshop (ClinicalNLP). The COLING 2016 Organizing Committee, Osaka, Japan, 42–53.
- He, K., Zhang, X., Ren, S., and Sun, J. 2016. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 770–778. DOI: https://doi.org/10.1109/CVPR.2016.90
- Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural computation 9, 1735–80. DOI: https://doi.org/10.1162/neco.1997.9.8.1735
- Hwang, W., Hajishirzi, H., Ostendorf, M., and Wu, W. 2015. Aligning sentences from standard Wikipedia to simple Wikipedia. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, Denver, Colorado, 211–217. DOI: https://doi.org/10.3115/v1/N15-1022
- Ibrahim, A., Katz, B., and Lin, J. 2003. Extracting structural paraphrases from aligned monolingual corpora. In Proceedings of the Second International Workshop on Paraphras- ing. Association for Computational Linguistics, Sapporo, Japan, 57–64. DOI: https://doi.org/10.3115/1118984.1118992
- Iordanskaja L., Kittredge R., P. A. . 1991. Lexical selection and paraphrase in a meaning- text generation model. In Natural Language Generation in Artificial Intelligence and Com- putational Linguistics. The Kluwer International Series in Engineering and Computer Sci- ence (Natural Language Processing and Machine Translation). Springer, Boston, MA, Paris C.L., Swartout W.R., Mann W.C. (eds), 293–312. DOI: https://doi.org/10.1007/978-1-4757-5945-7_11
- Iyyer, M., Wieting, J., Gimpel, K., and Zettlemoyer, L. 2018. Adversarial example gen- eration with syntactically controlled paraphrase networks. In Proceedings of the 2018 Con- ference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, New Orleans, Louisiana, 1875–1885. DOI: https://doi.org/10.18653/v1/N18-1170
- Jones, K. S. and Tait, J. I. 1984. Automatic search term variant generation. Journal of Documentation, 40(1) 40, 50–60. DOI: https://doi.org/10.1108/eb026757
- Kenter, T., Borisov, A., and de Rijke, M. 2016. Siamese CBOW: Optimizing word embed- dings for sentence representations. In Proceedings of the 54th Annual Meeting of the Asso- ciation for Computational Linguistics. Association for Computational Linguistics, Berlin, Germany, 941–951. DOI: https://doi.org/10.18653/v1/P16-1089
- Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling, M. 2014. Semi-supervised learning with deep generative models. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. MIT Press, Cambridge, MA, USA, 3581–3589.
- Kingma, D. P. and Welling, M. 2014. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations, ICLR , Conference Track Proceedings. ICLR, Banff, AB, Canada, 1–14.
- Lavie, A. and Agarwal, A. 2007. METEOR: An automatic metric for MT evaluation with high levels of correlation with human judgments. In Proceedings of the Second Workshop on Statistical Machine Translation. Association for Computational Linguistics, Prague, Czech Republic, 228–231. DOI: https://doi.org/10.3115/1626355.1626389
- Li, Z., Jiang, X., Shang, L., and Li, H. 2018. Paraphrase generation with deep reinforcement learning. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium, 3865–3878. DOI: https://doi.org/10.18653/v1/D18-1421
- Li, Z., Jiang, X., Shang, L., and Liu, Q. 2019. Decomposable neural paraphrase generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, Italy, 3403–3414. DOI: https://doi.org/10.18653/v1/P19-1332
- Lin, T.-Y., Maire, M., Belongie, S. J., Hays, J., Perona, P., Ramanan, D., Dolla´r, P., and Zitnick, C. L. 2014. Microsoft coco: Common objects in context. In European Conference on Computer Vision. ArXiv, Springer, 2014, 740–755. DOI: https://doi.org/10.1007/978-3-319-10602-1_48
- Luong, T., Pham, H., and Manning, C. D. 2015. Effective approaches to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Lisbon, Portugal, 1412–1421. DOI: https://doi.org/10.18653/v1/D15-1166
- Ma, S., Sun, X., Li, W., Li, S., Li, W., and Ren, X. 2018. Query and output: Generating words by querying distributed word representations for paraphrase generation. In NAACL- HLT. Association for Computational Linguistics, New Orleans, Louisiana, 196–206. DOI: https://doi.org/10.18653/v1/N18-1018
- Madnani, N. and Dorr, B. J. 2010. Generating phrasal and sentential paraphrases: A survey of data-driven methods. Computational Linguistics 36, 3 (Sept.), 341–387. DOI: https://doi.org/10.1162/coli_a_00002
- Malakasiotis, P. and Androutsopoulos, I. 2011. A generate and rank approach to sen- tence paraphrasing. In Proceedings of the 2011 Conference on Empirical Methods in Natu- ral Language Processing. Association for Computational Linguistics, Edinburgh, Scotland, UK., 96–106.
- Mallinson, J., Sennrich, R., and Lapata, M. 2017. Paraphrasing revisited with neural machine translation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, Valencia, Spain, 881–893. DOI: https://doi.org/10.18653/v1/E17-1083
- Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. 2002. Bleu: A method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, USA, 311–318. DOI: https://doi.org/10.3115/1073083.1073135
- Pa¸sca, M. and Dienes, P. 2005. Aligning needles in a haystack: Paraphrase acquisition across the web. In Second International Joint Conference on Natural Language Processing: Full Papers. Springer Berlin Heidelberg, Berlin, Heidelberg, 119–130. DOI: https://doi.org/10.1007/11562214_11
- Patro, B. N., Kurmi, V. K., Kumar, S., and Namboodiri, V. P. 2018. Learning semantic
- sentence embeddings using pair-wise discriminator. In Proceedings of the 27th International Conference on Computational Linguistics. COLLING, 2715–2729.
- Pavlick, E., Rastogi, P., Ganitkevitch, J., Van Durme, B., and Callison-Burch,
- C. 2015. PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Association for Computational Linguistics, Beijing, China, 425–430.
- Pennington, J., Socher, R., and Manning, C. 2014. Glove: Global vectors for word repre- sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar, 1532–1543. DOI: https://doi.org/10.3115/v1/D14-1162
- Prakash, A., Hasan, S. A., Lee, K., Datla, V., Qadir, A., Liu, J., and Farri, O. 2016. Neural paraphrase generation with stacked residual LSTM networks. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical
- Papers. The COLING 2016 Organizing Committee, Osaka, Japan, 2923–2934.
- Qian, L., Qiu, L., Zhang, W., Jiang, X., and Yu, Y. 2019. Exploring diverse expressions for paraphrase generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China, 3173–3182. DOI: https://doi.org/10.18653/v1/D19-1313
- Quirk, C., Brockett, C., and Dolan, W. 2004. Monolingual machine translation for para- phrase generation. In In Proceedings of the 2004 conference on empirical methods in natural language processing. Association for Computational Linguistics, Barcelona, Spain, 142–149.
- Rezende, D. J., Mohamed, S., and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In Proceedings of the 31st International Conference on International Conference on Machine Learning. JMLR.org, Beijing, China,
- –1286.
- Ringgaard, M., Gupta, R., and Pereira, F. C. 2017. Sling: A framework for frame semantic parsing. CORR abs/1710.07032, 111–138.
- Roy, A. and Grangier, D. 2019. Unsupervised paraphrasing without translation. In Proceed- ings of the 57th Annual Meeting of the Association for Computational Linguistics. Associ- ation for Computational Linguistics, Florence, Italy, 6033–6039. DOI: https://doi.org/10.18653/v1/P19-1605
- See, A., Liu, P., and Manning, C. 2017. Get to the point: Summarization with pointer- generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 1073–1083. DOI: https://doi.org/10.18653/v1/P17-1099
- Shah, P., Hakkani-Tu¨r, D. Z., Tu¨r, G., Rastogi, A., Bapna, A., Kennard, N. N., and Heck, L. 2018. Building a conversational agent overnight with dialogue self-play. CoRR abs/1801.04871, 1–11.
- Shinyama, Y., Sekine, S., and Sudo, K. 2002. Automatic paraphrase acquisition from news articles. In Proceedings of the Second International Conference on Human Language Tech- nology Research. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 313–318. DOI: https://doi.org/10.3115/1289189.1289218
- Singh, A. and Josan, G. S. 2021. A deep network model for paraphrase detection in punjabi. DOI: https://doi.org/10.1007/978-981-15-8297-4_15
- In Recent Innovations in Computing. Springer Singapore, Singapore, 173–185.
- Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. 2006. A study of translation edit rate with targeted human annotation. In Proceedings of the 7th Conference of the. Association for Machine Translation of the Americas. Visions for the Future of Machine Translation (AMTA 2006), Cambridge, Massachusetts, USA, 223–231.
- Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts, C. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Seattle, Washington, USA, 1631–1642.
- Sohn, K., Yan, X., and Lee, H. 2015a. Learning structured output representation using deep conditional generative models. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. MIT Press, Cambridge, MA, USA, 3483–3491.
- Sohn, K., Yan, X., and Lee, H. 2015b. Learning structured output representation using deep conditional generative models. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. MIT Press, Cambridge, MA, USA, 3483–3491.
- Sokolov, A. and Filimonov, D. 2018. Neural machine translation for paraphrase genera- tion. In 2nd Conversational AI. Association for the Advancement of Artificial Intelligence, Montreal, Canada, 1–6.
- Song, L., Wang, Z., Hamza, W., Zhang, Y., and Gildea, D. 2018. Leveraging context information for natural question generation. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, New Orleans, Louisiana, 569–574. DOI: https://doi.org/10.18653/v1/N18-2090
- Soni, S. and Roberts, K. 2019. A paraphrase generation system for EHR question answering. In Proceedings of the 18th BioNLP Workshop and Shared Task. Association for Computa- tional Linguistics, Florence, Italy, 20–29. DOI: https://doi.org/10.18653/v1/W19-5003
- Su, Y., Sun, H., Sadler, B., Srivatsa, M., Gu¨r, I., Yan, Z., and Yan, X. 2016. On generating characteristic-rich question sets for QA evaluation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Association for Compu- tational Linguistics, Austin, Texas, 562–572. DOI: https://doi.org/10.18653/v1/D16-1054
- Sutskever, I., Vinyals, O., and Le, Q. V. 2014. Sequence to sequence learning with neural networks. Advances in neural information processing systems 2, 3104–3112.
- van den Oord, A., Vinyals, O., and Kavukcuoglu, K. 2017. Neural discrete representation learning. In 31st Conference on Neural Information Processing Systems. NIPS, Long Beach, CA, USA, 6306–6315.
- Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A., Gouws, S., Jones,
- L., Kaiser, L� ., Kalchbrenner, N., Parmar, N., Sepassi, R., Shazeer, N., and
- Uszkoreit, J. 2018. Tensor2Tensor for neural machine translation. In Proceedings of the 13th Conference of the Association for Machine Translation in the Americas. Association for Machine Translation in the Americas, Boston, MA, 193–199.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. 2017. Attention is all you need. In NIPS. NIPS, Long Beach, CA, USA, 5998–6008.
- Vinyals, O., Fortunato, M., and Jaitly, N. 2015. Pointer networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. MIT Press, Cambridge, MA, USA, 2692–2700.
- Wang, S., Gupta, R., Chang, N., and Baldridge, J. 2019. A task in a suit and a tie: Paraphrase generation with semantic augmentation. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI. AAAI Press, Honolulu, Hawaii, USA, 7176–7183. DOI: https://doi.org/10.1609/aaai.v33i01.33017176
- Wieting, J. and Gimpel, K. 2018. ParaNMT-50M: Pushing the limits of paraphrastic sen- tence embeddings with millions of machine translations. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Melbourne, Australia, 451–462. DOI: https://doi.org/10.18653/v1/P18-1042
- Xu, Q., Zhang, J., Qu, L., Xie, L., and Nock, R. 2018. D-page: Diverse paraphrase generation. CORR abs/1808.04364, 1–12.
- Xu, W., Ritter, A., and Grishman, R. 2013. Gathering and generating paraphrases from
- twitter with application to normalization. In Proceedings of the Sixth Workshop on Building and Using Comparable Corpora. Association for Computational Linguistics, Sofia, Bulgaria, 121–128.
- Yang, Q., Huo, Z., Shen, D., Cheng, Y., Wang, W., Wang, G., and Carin, L. 2019. An end-to-end generative architecture for paraphrase generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna- tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong, China, 3132–3142. DOI: https://doi.org/10.18653/v1/D19-1309
- Yelp. 2017. Yelp dataset challenge, round 8. Yelp 1, 1–9.
- Zhang, C., Sah, S., Nguyen, T., Peri, D., Loui, A., Salvaggio, C., and Ptucha, R. W. 2018. Semantic sentence embeddings for paraphrasing and text summarization. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP) abs/1809.10267, 705– 709. DOI: https://doi.org/10.1109/GlobalSIP.2017.8309051
- Zhao, S., Lan, X., Liu, T., and Li, S. 2009. Application-driven statistical paraphrase gen- eration. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Association for Computational Linguistics, Suntec, Singapore, 834–842. DOI: https://doi.org/10.3115/1690219.1690263
- Zhou, L., Lin, C.-Y., Munteanu, D. S., and Hovy, E. 2006. ParaEval: Using paraphrases to evaluate summaries automatically. In Proceedings of the Human Language Technology Conference of the NAACL, Main Conference. Association for Computational Linguistics, New York City, USA, 447–454. DOI: https://doi.org/10.3115/1220835.1220892
- Zhu, Z., Bernhard, D., and Gurevych, I. 2010. A monolingual tree-based translation model for sentence simplification. In Proceedings of the 23rd International Conference on Computational Linguistics. Coling 2010 Organizing Committee, Beijing, China, 1353–1361.