A technique for Spatial Data Classification Method Using Random Forest based Correlation

##plugins.themes.academic_pro.article.main##

P.D.SHEENA SMART
K.K. THANAMMAL
S.S.SUJATHA

Abstract




Spatial data mining is a technique mainly used for predictive analytics. Data mining is the method of determining necessary samples from spatial datasets using machine learning methods. But, the existing prediction methods failed to forecast accurately with more accuracy and reduced error. A Random Forest Correlation based Fuzzy classification technique is introduced to improve the spatial data classification and error reduction. The algorithm constructs a random forest and the correlation is measured between the training and testing features. A fuzzy rule based classification is performed for classification into subsets. The proposed method takes forest fire dataset as input and evaluates the parameters such as classification accuracy, space complexity and classification time. The output is a subset of classes of fired and non fired region with enhanced classification accuracy, minimal false-positive rate and reduced time complexity.




 

 

##plugins.themes.academic_pro.article.details##

How to Cite
SMART, P., K.K. THANAMMAL, & S.S.SUJATHA. (2022). A technique for Spatial Data Classification Method Using Random Forest based Correlation. International Journal of Next-Generation Computing, 13(1). https://doi.org/10.47164/ijngc.v13i1.385

References

  1. Abdelhalim, A., Traore, I., and Sayed, B. 2009. In RBDT-1: A New Rule-Based Decision Tree Generation Technique. Rule Interchange and Applications, Lecture Notes in Computer Science, Vol 5858. pp.108–121. DOI: https://doi.org/10.1007/978-3-642-04985-9_12
  2. Alam, M. Z., Rahman, M. S., and Rahman, M. S. 2019. A random forest based predictor for medical data classification using feature ranking. Informatics In Medicine Unlocked Vol. 15, 100180. DOI: https://doi.org/10.1016/j.imu.2019.100180
  3. Alieja Muhammad Iqbal, M. A. and PUTRADA, A. G. 2018. Increasing smoke classifier accuracy using na¨ıve bayes method on internet of things. Kinetik : Game technology, Information System, Computer Network, Computing, Electronics and Control Vol. 4, pp. 19–26. DOI: https://doi.org/10.22219/kinetik.v4i1.704
  4. Berrett, C. and Calder, C. A. 2016. Bayesian spatial binary classification - spatial statistics. DOI: https://doi.org/10.1016/j.spasta.2016.01.004
  5. Vol 16, pp. 72–102.
  6. Binh Thai, P., Prakash, I., and Bui, D. 2018. Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology Vol. 303, pp. 256–270. DOI: https://doi.org/10.1016/j.geomorph.2017.12.008
  7. Congyan Zhang, Mingjiang Wang, Y. and Yunzhou. 2017. An improved affine projection algorithm for active noise cancellation. In Green Energy and Sustainable Development. pp.020009. DOI: https://doi.org/10.1063/1.4992826
  8. Cortez, P. and Morais, A. 2007. In Forest Fires Dataset: UCI Machine Learning Repository.
  9. UCI Machine Learning Repository. Accessed on 28 July 2021.
  10. Dieu Tien Bui, Tran Anh Tuan, N.-D. H. N. Q. T. D. B. N. N. V. L. and Pradhan, B. 2016. Spatial prediction of rainfall-induced landslides for the lao cai area (vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides Vol. 14, pp. 447–458. DOI: https://doi.org/10.1007/s10346-016-0711-9
  11. Hamed Adab, K. D. K. and Solaimani, K. 2013. Modeling forest fire risk in the northeast of iran using remote sensing and gis techniques. Natural Hazards Vol. 65, pp. 1723–1743. DOI: https://doi.org/10.1007/s11069-012-0450-8
  12. Hexiang Bai, Yong Ge, J. W. D. L. Y. L. and Zheng, X. 2014. A method for extracting rules from spatial data based on rough fuzzy sets. Knowledge-Based Systems Vol. 57, pp. 28–40. DOI: https://doi.org/10.1016/j.knosys.2013.12.008
  13. Knoll, L., Breuer, L., and Bach, M. 2019. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Science of the Total Environ- ment Vol. 668, pp. 1317–1327. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.045
  14. Lei Wang, L. Z., Gui, G., and Zheng. 2017. Adaptive ensemble method based on spatial characteristics for classifying imbalanced data. Scientific Programming Vol. 2017, pp. 1–8. DOI: https://doi.org/10.1155/2017/3704525
  15. Leuenberger, M. and Kanevski, M. 2015. Extreme learning machines for spatial environ- DOI: https://doi.org/10.1016/j.cageo.2015.06.020
  16. mental data. Computers and Geosciences Vol. 85, pp. 64–73.
  17. M. S. Lavreniuk, S. V. Skakun, A. J. S. B. Y. Y. S. L. Y. D. J. Y. . A. I. K. 2016. Large-scale classification of land cover using retrospective satellite data. Cybernetics And Systems Analysis Vol. 52, pp. 127–138. DOI: https://doi.org/10.1007/s10559-016-9807-4
  18. Mahyat Shafapour Tehrany, Simon Jones, F. S. F. M.-A. and Bui, D. T. 2018. A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using logitboost machine learning classifier and multi-source geospatial data. Theoretical And Applied Climatology , pp. 1–17.
  19. Maiti, S. and R.B.V.Subramanyam. 2021. Mining co-location patterns from distributed spatial data. Journal Of King Saud University - Computer And Information Sciences 33, pp. 1064–1073. DOI: https://doi.org/10.1016/j.jksuci.2018.08.010
  20. Nittaya Kerdprasop, Pumrapee Poomka, P. C. and Kerdprasop, K. 2018. Forest fire area estimation using support vector machine as an approximator. In International Joint Conference on Computational Intelligence. 269–273. DOI: https://doi.org/10.5220/0007224802690273
  21. Patrick Schratz, Jannes Muenchow, E. I. J. R. and Brenning, A. 2019. Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data. Ecological Modelling Vol. 406, pp. 109–120. DOI: https://doi.org/10.1016/j.ecolmodel.2019.06.002
  22. Ruben Ramo, Mariano Garcia, D. R. and Chuvieco, E. 2018. A data mining approach for global burned area mapping. International Journal of Applied Earth Observation and Geoinformation Vol. 73, pp. 39–51. DOI: https://doi.org/10.1016/j.jag.2018.05.027
  23. Slavakis, K. and Theodoridis, S. 2008. Sliding window generalized kernel affine projection algorithm using projection mappings. Eurasip Journal On Advances In Signal Process- ing 2008, 735351. DOI: https://doi.org/10.1155/2008/735351
  24. Wood, D. A. 2021. Prediction and data mining of burned areas of forest fires: Optimized data matching and mining algorithm provides valuable insight. Artificial Intelligence In Agriculture Vol. 5, pp. 24–42. DOI: https://doi.org/10.1016/j.aiia.2021.01.004
  25. X. M. Zhang, G. J. He, Z. M. Z.-Y. P. . T. F. L. 2009. Spectral-spatial multi-feature classification of remote sensing big data based on a random forest classifier for land cover mapping. Cluster Computing Vol. 20, pp. 2311–2321. DOI: https://doi.org/10.1007/s10586-017-0950-0
  26. Xiongfeng Yan, Tinghua Ai, M. Y. and Yin, H. 2019. A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing Vol. 150, pp. 259–273. DOI: https://doi.org/10.1016/j.isprsjprs.2019.02.010
  27. Yanpeng Qu, Changjing Shang, N. M. P. W. W. . Q. S. 2018. Multi-functional nearest- neighbour classification. Soft Computing Vol. 22, pp. 2717–2730. DOI: https://doi.org/10.1007/s00500-017-2528-4
  28. Yumin Chen, Jiang Zhou, J. P. W. J. W. Q. W. and Yang, J. 2018. A dynamic classi- fication pattern of spatial statistical services using formal concept analysis. Geographical Analysis Vol. 50, pp. 454–476. DOI: https://doi.org/10.1111/gean.12154
  29. Zhang, L., Ma, W., and Zhang, D. 2016. Stacked sparse autoencoder in polsar data classifi- cation using local spatial information. IEEE Geoscience And Remote Sensing Letters Vol. 13, pp. 1359 – 1363. DOI: https://doi.org/10.1109/LGRS.2016.2586109