Investigating Techniques for Automating the Selection of Cloud Infrastructure Services

##plugins.themes.academic_pro.article.main##

Miranda Zhang
Rajiv Ranjan
Dimitrios Georgakopoulos
Peter Strazdins
Samee U. Khan
Armin Haller

Abstract

The Cloud infrastructure services landscape advances steadily leaving users in the agony of choice. As a result, Cloud service identication and discovery remains a hard problem due to dierent service descriptions, non- standardised naming conventions and heterogeneous types and features of Cloud services. In this paper, analysis the research challenges and present a Web Ontology Language (OWL) based ontology, the Cloud Computing Ontology (CoCoOn). It denes functional and non-functional concepts, attributes and relations of infrastructure services. We also present a system, CloudRecommender, that implements our domain ontology in a relational model. The system uses regular expressions and Structured Query Language (SQL) for matching user requests to service descriptions. We brie y describe the architecture of the CloudRecommender system, and demonstrate its eectiveness and scalability through a service conguration selection experiment based on a set of prominent Cloud providers' descriptions including Amazon, Azure, and GoGrid.

##plugins.themes.academic_pro.article.details##

How to Cite
Miranda Zhang, Rajiv Ranjan, Dimitrios Georgakopoulos, Peter Strazdins, Samee U. Khan, & Armin Haller. (2013). Investigating Techniques for Automating the Selection of Cloud Infrastructure Services. International Journal of Next-Generation Computing, 4(3), 215–229. https://doi.org/10.47164/ijngc.v4i3.54

References

  1. AmazonEC2 2012. http://aws.amazon.com/ec2/instance-types/. AWS Case Study 2012, The Server Labs. Avail- able: http://aws.amazon.com/solutions/case-studies/the-server-labs/
  2. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patter- son, D., Rabkin, A., Stoica, I., and Zaharia, M. 2010. A view of Cloud Computing, Commu- nications of the ACM Magazine, Vol. 53, No. 4, ACM Press, 50-58. Amazon Price Calculator 2013: http://calculator.s3.amazonaws.com/calc5.html.
  3. Brodsky, A., Bhot, M. M., Chandrashekar, M., Egge, N. E., and Wang, X. S. 2009. A Decisions Query Language (DQL): High-level Abstraction for Mathematical Programming over Databases. In Proceedings of the 35th SIGMOD international conference on Management of data (SIGMOD '09), RI, USA, June 29 - July 02, 2009, C. Binnig and B. Dageville, Eds. ACM Press, New York, NY, USA.
  4. Bruijn, J.D., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M., Konigries, B., Kopechy, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J., and Stollberg, M. 2005. Web service modeling ontology (WSMO), W3C, Tech. Report.
  5. Caldwell, D., Gilbert, A., Gottlieb, J., Greenberg, A., Hjalmtysson, G., and Rexford, J. 2004. The cutting EDGE of IP router con guration. SIGCOMM Comput. Commun. Rev.34, 1 (January 2004), 21-26.
  6. Chen, X., Mao, Y., Mao, Z. M., and Merwe, J. V. D. 2010. Declarative Con guration Management for Complex and Dynamic Networks. In Proceedings of the 6th ACM International Conference on emerging Networking Experiments and Technologies (CoNEXT), 10 pages, Philadelphia, USA, ACM Press.
  7. Dobson, G., Lock, R., and Sommerville, I. 2005. QoSOnt: a QoS ontology for service-centric systems, In Proceedings of the 31st EUROMICRO Conference on Software Engineering and Advanced Applications, Porto, Portugal, 30 August - 3 September 2005, 80-87.
  8. Eskridge, T., Hayes, P., and Hoffman, R. 2006. Formalizing the informal: A Con uence of Concept Mapping and the Semantic Web. In Proceedings of the Second Int. Conference on Concept Mapping, San Jos, Costa Rica, 2006, A. J. CANAS AND J. D. NOVAK, Eds. 247-254.
  9. GENS, F. 2010. IDC's Public IT Cloud Services Forecast: New Numbers, Same Disruptive Story. Available: http://blogs.idc.com/ie/?p=922
  10. Jaeger, M. C., Muhl, G., and Golze, S. 2005. QoS-aware composition of Web services: a look at selection algorithms. In Proceedings of IEEE International Conference on Web Services (ICWS'05), IEEE Computer Society, Orlando, Florida, USA, July 11-15, 2005, 800-808.
  11. Li, A., Yang, X., Kandula, S., and Zhang, M. 2010. CloudCmp: comparing public cloud providers. In Pro- ceedings of the 10th ACM SIGCOMM conference on Internet measurement(IMC '10), Melbourne, Australia, November 01 - 03, 2010, ACM, New York, USA, 1-14.
  12. Martin, D. L., Paolucci, M., Mcilraith, S. A., Burstein, M. H., Madermott, D. V., Mcguinness, D. L., Parsia, B., Payne, T. R., Sabou, M., Solanki, M., Srinivasan, N., and Sycara, K. P. 2004. Bringing Semantics to Web Services: The OWL-S Approach. In Proceedings of the First International Workshop on Semantic Web Services and Web Process Composition, San Diego, CA, USA, July 6, 2004, J. CARDOSO AND A. P. SHETH, Eds. Springer, 26-42.
  13. Mao, Y., Liu, C., Merwe, J. E. V. D., and Fernandez, M. 2011. Cloud Resource Orchestration: A Data- Centric Approach. In Proceedings of the 5th biennial Conference on Innovative Data Systems Research (CIDR), Asilomar, California, USA, January 9-12, 2011, 241-248.
  14. OWL2 2009. Web Ontology Language: Document Overview. W3C Recommendation, http://www.w3.org/TR/owl2-overview/
  15. Ozsoyoglu, G., and Al-hamdani, A. 2003. Web Information Resource Discovery: Past, Present, and Future. In Proceedings of the 18th International Symposium on Computer and Information Sciences, Antalya, Turkey, November 2003, A. YAZICI AND C. SENER, Eds. Springer, Berlin, Heidelberg, 9-18.
  16. Pingdom 2011. Web pages are getting more bloated, and here's why. Available: http://royal.pingdom.com/2011/11/21/web-pages-getting-bloated-here-is-why/
  17. Ruiz-alvarez, A., and Humphrey, M. 2011. An Automated Approach to Cloud Storage Service Selection. In Proceedings of the 2nd international workshop on Scienti c cloud computing (ScienceCloud '11), San Jose, California, USA, June 08 - 11, 2011, ACM Press, New York, USA, 39-48.
  18. Windows Azure Calculator 2013. http://www.windowsazure.com/en-us/pricing/calculator/.
  19. Wada, H., Suzuki, J., Yamano, Y., and Oba, K. 2011. Evolutionary Deployment Optimization for Service Oriented Clouds. Software: Practice and Experience 4, 469 - 493.
  20. Wang, L., Ranjan, R., Chen, J., and Benatallah, B. editors 2011. Cloud Computing: Methodology, Systems, and Applications. Taylor and Francis Group , London, UK.
  21. Wang, L., Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., and Fu, C. 2010. Cloud Computing: a Perspective Study. New Generation Comput. 28(2): 137-146
  22. Wang, L., Kunze, M., Tao, J., and Laszewski, G. 2011. Towards building a cloud for scienti c applications. Advances in Engineering Software 42(9): 714-722.
  23. Wang, L., and FU, C. 2010. Research Advances in Modern Cyberinfrastructure. New Generation Comput. 28(2): 111-112.
  24. Wang, L., Laszewski, G., Chen, D., Tao, J., and Kunze, M. 2010. Provide Virtual Machine Information for Grid Computing. IEEE Transactions on Systems, Man, and Cybernetics, Part A 40(6): 1362-1374.
  25. Wang, L., Chen, D., and Huang, F. 2011. Virtual work ow system for distributed collaborative scienti c applications on Grids. Computers & Electrical Engineering 37(3): 300-310.
  26. Yelp 2012. AWS Case Study, http://aws.amazon.com/solutions/case-studies/yelp/
  27. YelpInc 2012. Wikipedia. Available: http://en.wikipedia.org/wiki/Yelp, Inc.
  28. Youseff, L., Butrico, M., and Silva, D. D. 2008. Toward a Uni ed Ontology of Cloud Computing. In Grid Computing Environments Workshop, Austin, TX, USA, Nov 2008, GCE '08. IEEE Computer Society, Washington, DC, USA, 1-10.