An Efficient Viterbi Algorithm for Communication System

##plugins.themes.academic_pro.article.main##

Gouri Padgal
Dr. Shruti Oza

Abstract

The method of decoding by Viterbi is used in areas like convolutional codes in digital TV, wireless local area networks, satellite communication, mobile relay. Also, the method is used in the development of Automatic Speech Recognition (ASR) and storage systems that work automatically. For Viterbi decoder-based architectures with low latency and complexity, which proposes error detection techniques that are effective. This paper explores the Viterbi algorithm which has two types of approaches for two types of subparts. Important aspects of any communication system are area/power consumption and throughput /efficiency. Minimization of these aspects is the need for an efficient system. This paper explores unwanted logical block reduction by modifying the present logical block. This paper explores signature-based approaches which result in acceptable efficiency. Also, another approach is used to achieve error detection in permanent and transient faults. This error detection is achieved by recomputing with encoded operands. Encoding means the use of shifting operation or the use of rotation operation. This approach makes the system slightly reliable and efficient.

##plugins.themes.academic_pro.article.details##

How to Cite
Padgal, G., & Oza, S. (2022). An Efficient Viterbi Algorithm for Communication System. International Journal of Next-Generation Computing, 13(3). https://doi.org/10.47164/ijngc.v13i3.626

References

  1. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260 – 269, 1967. DOI: https://doi.org/10.1109/TIT.1967.1054010
  2. D. Vaithiyanathan, J. Nargis, R. Seshasayanan, “High performance ACS for Viterbi decoder using pipeline T-Algorithm”, Alexandria Engineering Journal, Volume 54, Issue 3, 2015, Pages 447-455, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2015.04.007 DOI: https://doi.org/10.1016/j.aej.2015.04.007
  3. S. Ranpara and D. S. Ha, “A low-power Viterbi decoder design for wireless communications applications”, IEEE Intl. Conf. Proceedings ASIC/SOC, pp. 377 – 381, Sep.1999.
  4. H. Liu, Z. Wang, X. Huang, K. Z. Liu, Z. Wang, X. Huang, and K. Zhang, “High-speed low-power Viterbi decoder design for tcm decoders,” IEEE Trans. VLSI Syst., vol. 20, no. 4, pp. 755–759, Apr 2012. DOI: https://doi.org/10.1109/TVLSI.2011.2111392
  5. K. Arunlal and S. Hariprasad, “An efficient Viterbi decoder”, Int. Journal of Advanced Information Technology, vol. 2, no. 1, Feb 2012. DOI: https://doi.org/10.5121/ijcsea.2012.2110
  6. J. Kong and K. Parhi, “K-nested layered look-ahead method and architectures for high throughput Viterbi decoder,” in Proc. IEEE Workshop on Signal Processing Systems, 2003, pp. 99 – 104.
  7. G. Jung, J. Kong, G. Sobelman, and K. Parhi, “High-speed add-compare-select units using locally self-resetting CMOS,” in IEEE Int. Sym. Cir. and Sys., vol-1, 2002, pp. 889–892.
  8. M. Akbar and J.-A. Lee, “Comments on ‘self-checking carry-select adder design based on two-rail encoding’,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 7, pp. 2212–2214, Jul. 2014. DOI: https://doi.org/10.1109/TCSI.2013.2295930
  9. M. Mozaffari Kermani, V. Singh and R. Azarderakhsh, “Reliable Low-Latency Viterbi Algorithm Architectures Benchmarked on ASIC and FPGA”, in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 1, pp. 208-216, Jan. 2017, doi: 10.1109/TCSI.2016.2610187. DOI: https://doi.org/10.1109/TCSI.2016.2610187
  10. S. L. Bangare, “Classification of optimal brain tissue using dynamic region growing and fuzzy min-max neural network in brain magnetic resonance images”, Neuroscience Informatics, Volume 2, Issue 3, September 2022, 100019, ISSN 2772-5286, https://doi.org/10.1016/j.neuri.2021.100019. DOI: https://doi.org/10.1016/j.neuri.2021.100019
  11. S. L. Bangare, G. Pradeepini, S. T. Patil, “Implementation for brain tumor detection and three dimensional visualization model development for reconstruction”, ARPN Journal of Engineering and Applied Sciences (ARPN JEAS), Vol.13, Issue.2, ISSN 1819-6608, pp.467-473. 20/1/2018
  12. S. L. Bangare, S. T. Patil et al, “Reviewing Otsu’s Method for Image Thresholding.” International Journal of Applied Engineering Research 10.9 (2015): 21777-21783. DOI: https://doi.org/10.37622/IJAER/10.9.2015.21777-21783
  13. S. L. Bangare, G. Pradeepini, S. T. Patil, “Regenerative pixel mode and tumor locus algorithm development for brain tumor analysis: a new computational technique for precise medical imaging”, International Journal of Biomedical Engineering and Technology, Inderscience, 2018, Vol.27 No.1/2. DOI: https://doi.org/10.1504/IJBET.2018.093087
  14. Nilesh Shelke, Sushovan Chaudhury, Sudakshina Chakrabarti, Sunil L. Bangare, G. Yogapriya, Pratibha Pandey, “An efficient way of text-based emotion analysis from social media using LRA-DNN”, Neuroscience Informatics, Volume 2, Issue 3, 2022, 100048, ISSN 2772-5286, https://doi.org/10.1016/j.neuri.2022.100048. DOI: https://doi.org/10.1016/j.neuri.2022.100048
  15. Suneet Gupta, Sumit Kumar, Sunil L. Bangare, Shibili Nuhmani, Arnold C. Alguno, Issah Abubakari Samori, “Homogeneous Decision Community Extraction Based on End-User Mental Behavior on Social Media”, Computational Intelligence and Neuroscience, vol. 2022, Article ID 3490860, 9 pages, 2022. https://doi.org/10.1155/2022/3490860. DOI: https://doi.org/10.1155/2022/3490860