Evaluating Consumer Behavior to Identify Significant Factors Influencing Trust in Web-based Health Information
##plugins.themes.academic_pro.article.main##
Abstract
Abstract
Background: The Internet has been welcomed for its role in enhancing inclusivity and global development; its use by the general population in health has also raised severe challenges. Evaluating the legitimacy of the medical information that may be found on the Internet is generally considered to be one of the most difficult aspects of using the internet.
Objective: The purpose of this research is to identify the key criteria that internet users consider when judging the trustworthiness of health information found on the internet.
Methods: We carried out an online survey in the form of a questionnaire with the purpose of monitoring the responses of three hundred participants belonging to a variety of age groups, on how they evaluate web-based health information. Their responses are recorded on a Likert scale, then statistically analyzed using exploratory factor analysis. The proposed methodology integrates several techniques - Kaiser-Meyer-Olkin(KMO)&Bartlett's test, Principal Component Analysis (PCA), Kaiser's criteria, and oblique rotation to identify significant factors influencing Web-based Health Information (WHI).
Results: For the reliability statistics we are getting a Cronbach alpha value of 0.961 for the survey instrument, which shows that the internal consistency among the variable is high. We found that the most essential factors for determining the quality of online health information are credibility (3.80), recommendations (3.33), verification (3.76), and user-friendliness (3.61).
Conclusion: According to our results, the factors that were revealed in this research seem to have a significant impact on the level of trust shown by individuals who look for health information online. These factors have the potential to be employed in the development of an automated tool that can determine the level of trust associated with web-based health information in a future study.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Afful-Dadzie, E., & Afful-Dadzie, A. (2021). Online health consumer behaviour: What informs user decisions on information quality? Computers in Human Behavior Reports, 3, 100064. https://doi.org/10.1016/J.CHBR.2021.100064 DOI: https://doi.org/10.1016/j.chbr.2021.100064
- Albaum, G. (1997). The Likert scale revisited. Market Research Society. Journal., 39(2), 1–21. DOI: https://doi.org/10.1177/147078539703900202
- Battineni, G., Baldoni, S., Chintalapudi, N., Sagaro, G. G., Pallotta, G., Nittari, G., & Amenta, F. (2020). Factors affecting the quality and reliability of online health information. DIGITAL HEALTH, 6, 2055207620948996. https://doi.org/10.1177/2055207620948996 DOI: https://doi.org/10.1177/2055207620948996
- Boyer, C., Baujard, V., & Geissbuhler, A. (2011). Evolution of health web certification through the HONcode experience. Studies in Health Technology and Informatics, 169, 53–57. DOI: https://doi.org/10.4414/smi.26.00233
- Chang, Y. S., Zhang, Y., & Gwizdka, J. (2021). The effects of information source and eHealth literacy on consumer health information credibility evaluation behavior. Computers in Human Behavior, 115, 106629. https://doi.org/10.1016/J.CHB.2020.106629 DOI: https://doi.org/10.1016/j.chb.2020.106629
- Corritore, C. L., Wiedenbeck, S., Kracher, B., & Marble, R. P. (2012). Online trust and health information websites. International Journal of Technology and Human Interaction, 8(4), 92–115. https://doi.org/10.4018/jthi.2012100106 DOI: https://doi.org/10.4018/jthi.2012100106
- Currie, W. L., & Seddon, J. J. M. (2014). A cross-national analysis of eHealth in the European Union: Some policy and research directions. Information & Management, 51(6), 783–797. https://doi.org/10.1016/J.IM.2014.04.004 DOI: https://doi.org/10.1016/j.im.2014.04.004
- Diviani, N., van den Putte, B., Giani, S., & van Weert, J. C. M. (2015). Low Health Literacy and Evaluation of Online Health Information: A Systematic Review of the Literature. J Med Internet Res 2015;17(5):E112 Https://Www.Jmir.Org/2015/5/E112, 17(5), e4018. https://doi.org/10.2196/JMIR.4018 DOI: https://doi.org/10.2196/jmir.4018
- Engelhard, F., & Garg, R. (2018). The influence of intra-cultural diversity on self-efficacy beliefs: evidence from India. International Journal of Indian Culture and Business Management, 16(2), 131–155. DOI: https://doi.org/10.1504/IJICBM.2018.090086
- Fogg, B. J., Marshall, J., Laraki, O., Osipovich, A., Varma, C., Fang, N., Paul, J., Rangnekar, A., Shon, J., Swani, P., & Treinen, M. (2001). What makes web sites credible? A report on a large quantitative study. Conference on Human Factors in Computing Systems - Proceedings, 61–68. DOI: https://doi.org/10.1145/365024.365037
- Hargittai, E., Fullerton, L., Menchen-Trevino, E., & Thomas, K. Y. (2010). Trust online: Young adults’ evaluation of web content. International Journal of Communication, 4, 27.
- Hesse, B. W., Nelson, D. E., Kreps, G. L., Croyle, R. T., Arora, N. K., Rimer, B. K., & Viswanath, K. (2005). Trust and sources of health information: the impact of the Internet and its implications for health care providers: findings from the first Health Information National Trends Survey. Archives of Internal Medicine, 165(22), 2618–2624. DOI: https://doi.org/10.1001/archinte.165.22.2618
- Kakol, M., Nielek, R., & Wierzbicki, A. (2017). Understanding and predicting Web content credibility using the Content Credibility Corpus. Information Processing & Management, 53(5), 1043–1061. https://doi.org/10.1016/J.IPM.2017.04.003 DOI: https://doi.org/10.1016/j.ipm.2017.04.003
- Keelery, S. (2021). Internet usage in India - statistics & facts. Statistics & Facts. https://www.statista.com/topics/2157/internet-usage-in-india/
- KENT, S. S. A. N. (2020). 8 charts on internet use around the world as countries grapple with COVID-19. Pew Research Center Survey. https://www.pewresearch.org/fact-tank/2020/04/02/8-charts-on-internet-use-around-the-world-as-countries-grapple-with-covid-19/
- Kington, R. S., Arnesen, S., Chou, W.-Y. S., Curry, S. J., Lazer, D., & Villarruel, A. M. (2021). Identifying Credible Sources of Health Information in Social Media: Principles and Attributes. NAM Perspectives, 2021, 10.31478/202107a. https://doi.org/10.31478/202107a DOI: https://doi.org/10.31478/202107a
- Maitz, E., Maitz, K., Sendlhofer, G., Wolfsberger, C., Mautner, S., Kamolz, L. P., & Gasteiger-Klicpera, B. (2020). Internet-Based Health Information–Seeking Behavior of Students Aged 12 to 14 Years: Mixed Methods Study. J Med Internet Res 2020;22(5):E16281 Https://Www.Jmir.Org/2020/5/E16281, 22(5), e16281. https://doi.org/10.2196/16281 DOI: https://doi.org/10.2196/16281
- McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). The impact of initial consumer trust on intentions to transact with a web site: a trust building model. The Journal of Strategic Information Systems, 11(3–4), 297–323. DOI: https://doi.org/10.1016/S0963-8687(02)00020-3
- Menchen-Trevino, E., & Hargittai, E. (2011). YOUNG ADULTS’CREDIBILITY ASSESSMENT OF WIKIPEDIA. Information, Communication & Society, 14(1), 24–51. DOI: https://doi.org/10.1080/13691181003695173
- Nie, N. H., Bent, D. H., & Hull, C. H. (1975). SPSS: Statistical package for the social sciences (Vol. 227). McGraw-Hill New York.
- Osborne, J. W., Costello, A. B., & Kellow, J. T. (2008). Exploratory factor analysis (EFA) is rightly described as both an art and a science, whereresearchers follow a series of ana-lytic steps involving judgments more reminis-cent of qualitative inquiry, an interesting irony given the mathematical sophisticati. Best Practices in Quantitative Methods, 86. DOI: https://doi.org/10.4135/9781412995627.d8
- Parija, P. P., Tiwari, P., Sharma, P., & Saha, S. K. (2020). Determinants of online health information-seeking behavior: A cross-sectional survey among residents of an urban settlement in Delhi. Journal of Education and Health Promotion, 9, 344. https://doi.org/10.4103/jehp.jehp_238_20 DOI: https://doi.org/10.4103/jehp.jehp_238_20
- Qi, M., Cui, J., Li, X., & Han, Y. (2021). Perceived Factors Influencing the Public Intention to Use E-Consultation: Analysis of Web-Based Survey Data. J Med Internet Res 2021;23(1):E21834 Https://Www.Jmir.Org/2021/1/E21834, 23(1), e21834. https://doi.org/10.2196/21834 DOI: https://doi.org/10.2196/21834
- Rowley, J., Johnson, F., & Sbaffi, L. (2015). Students’ trust judgements in online health information seeking. Health Informatics Journal, 21(4), 316–327. DOI: https://doi.org/10.1177/1460458214546772
- Sbaffi, L., & Rowley, J. (2017). Trust and credibility in web-based health information: A review and agenda for future research. Journal of Medical Internet Research, 19(6), 1–17. https://doi.org/10.2196/jmir.7579 DOI: https://doi.org/10.2196/jmir.7579
- Sbaffi, L., & Zhao, C. (2020). Modeling the online health information seeking process: Information channel selection among university students. Journal of the Association for Information Science and Technology, 71(2), 196–207. https://doi.org/10.1002/ASI.24230 DOI: https://doi.org/10.1002/asi.24230
- Schober, P., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864 DOI: https://doi.org/10.1213/ANE.0000000000002864
- Sillence, E., Briggs, P., Harris, P., & Fishwick, L. (2007). Going online for health advice: changes in usage and trust practices over the last five years. Interacting with Computers, 19(3), 397–406. DOI: https://doi.org/10.1016/j.intcom.2006.10.002
- Sun, Y., Zhang, Y., Gwizdka, J., & Trace, C. B. (2019a). Consumer evaluation of the quality of online health information: Systematic literature review of relevant criteria and indicators. Journal of Medical Internet Research, 21(5), 1–22. https://doi.org/10.2196/12522
- Sun, Y., Zhang, Y., Gwizdka, J., & Trace, C. B. (2019b). Consumer Evaluation of the Quality of Online Health Information: Systematic Literature Review of Relevant Criteria and Indicators. J Med Internet Res 2019;21(5):E12522 Https://Www.Jmir.Org/2019/5/E12522, 21(5), e12522. https://doi.org/10.2196/12522 DOI: https://doi.org/10.2196/12522
- Wilder-Smith, A., & Freedman, D. O. (2020). Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. Journal of Travel Medicine, 27(2), taaa020. https://doi.org/10.1093/jtm/taaa020 DOI: https://doi.org/10.1093/jtm/taaa020
- Wong, D. K. K., & Cheung, M. K. (2019). Online Health Information Seeking and eHealth Literacy Among Patients Attending a Primary Care Clinic in Hong Kong: A Cross-Sectional Survey. J Med Internet Res 2019;21(3):E10831 Https://Www.Jmir.Org/2019/3/E10831, 21(3), e10831. https://doi.org/10.2196/10831 DOI: https://doi.org/10.2196/10831
- Yoon, H., Jang, Y., Vaughan, P. W., & Garcia, M. (2020). Older Adults’ Internet Use for Health Information: Digital Divide by Race/Ethnicity and Socioeconomic Status. Journal of Applied Gerontology, 39(1), 105–110. https://doi.org/10.1177/0733464818770772 DOI: https://doi.org/10.1177/0733464818770772
- Yu, & DeVellis, R. F. (2016). Scale Development: Theory and Applications. Sage Publications, 21(6), 876. https://doi.org/10.2307/2075704 DOI: https://doi.org/10.2307/2075704
- Zhang, X., Liu, S., Chen, X., Wang, L., Gao, B., & Zhu, Q. (2018). Health information privacy concerns, antecedents, and information disclosure intention in online health communities. Information & Management, 55(4), 482–493. https://doi.org/10.1016/J.IM.2017.11.003 DOI: https://doi.org/10.1016/j.im.2017.11.003
- Zimmermann, M., & Jucks, R. (2018). How Experts’ Use of Medical Technical Jargon in Different Types of Online Health Forums Affects Perceived Information Credibility: Randomized Experiment With Laypersons. J Med Internet Res 2018;20(1):E30 Https://Www.Jmir.Org/2018/1/E30, 20(1), e8346. https://doi.org/10.2196/JMIR.8346 DOI: https://doi.org/10.2196/jmir.8346