Developing machine learning based framework for the network traffic prediction Machine learning based Traffic Prediction Section Original Research
##plugins.themes.academic_pro.article.main##
Abstract
Network traffic analysis is a crucial step in developing efficient congestion control systems and identifying valid and malicious packets. Because network resources are apportioned based on predicted usage, these solutions reduce network congestion. For a variety of reasons, including dynamic bandwidth allocation, network security, and network planning, the ability to forecast network traffic is critical. Machine learning (ML) techniques to network traffic analysis have received a lot of interest. This article outlines an approach for analyzing network traffic. Three machine learning-based methodologies make up the methodology. The experimental investigation employed the NSL KDD data set. On the basis of accuracy and other criteria, KNN, Support vector machine, and nave bayes are compared.
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- D Alconzo Alessandro, Drago Idilio, Morichetta Andrea, Mellia Marco, Casas Pedro, A survey on big data for network traffic monitoring and analysis IEEE Trans. Netw. Serv. Manag., 16 (3) (2019), pp. 800-813 DOI: https://doi.org/10.1109/TNSM.2019.2933358
- Shahraki Amin, Taherkordi Amir, Haugen Øystein, Eliassen Frank, Clustering objectives in wireless sensor networks: A survey and research direction analysis Comput. Netw., 180 (2020), Article 107376 DOI: https://doi.org/10.1016/j.comnet.2020.107376
- Boutaba Raouf, Salahuddin Mohammad A, Limam Noura, Ayoubi Sara, Shahriar Nashid, Estrada-Solano Felipe, Caicedo Oscar M A comprehensive survey on machine learning for networking: evolution, applications and research opportunities J. Internet Serv. Appl., 9 (1) (2018), p. 16 DOI: https://doi.org/10.1186/s13174-018-0087-2
- Sivarajah Uthayasankar, Kamal Muhammad Mustafa, Irani Zahir, Weerakkody Vishanth Critical analysis of big data challenges and analytical methods J. Bus. Res., 70 (2017), pp. 263-286 DOI: https://doi.org/10.1016/j.jbusres.2016.08.001
- Shahraki Amin, Geitle Marius, Haugen Øystein, A comparative node evaluation model for highly heterogeneous massive-scale internet of things-mist networks Trans. Emerg. Telecommun. Technol., 31 (12) (2020), Article e3924 DOI: https://doi.org/10.1002/ett.3924
- Shahraki Amin, Haugen Øystein An outlier detection method to improve gathered datasets for network behavior analysis in IoT Academy Publisher (2019) DOI: https://doi.org/10.12720/jcm.14.6.455-462
- Rezaei Shahbaz, Liu Xin, Deep learning for encrypted traffic classification: An overview IEEE Commun. Mag., 57 (5) (2019), pp. 76-81 DOI: https://doi.org/10.1109/MCOM.2019.1800819
- Ucci Daniele, Aniello Leonardo, Baldoni Roberto Survey of machine learning techniques for malware analysis Comput. Secur., 81 (2019), pp. 123-147 DOI: https://doi.org/10.1016/j.cose.2018.11.001
- Conti Mauro, Li QianQian, Maragno Alberto, Spolaor Riccardo The dark side(-channel) of mobile devices: A survey on network traffic analysis (2017) https://scholar.google.com/scholar?q=The%20dark%20side%20of%20mobile%20devices:%20A%20survey%20on%20network%20traffic%20analysis[10]Fadlullah Zubair Md, Tang Fengxiao, Mao Bomin, Kato Nei, Akashi Osamu, Inoue Takeru, Mizutani Kimihiro, State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems, IEEE Commun. Surv. Tutor. 19 (4) (2017), pp. 2432-2455 DOI: https://doi.org/10.1109/COMST.2017.2707140
- Gupta, A. ., & Prabhat, P. . (2017). Novel Approaches in Network Fault Management. International Journal of Next-Generation Computing, 8(2), 115–126. https://doi.org/10.47164/ijngc.v8i2.126
- Verma Shikhar, Kawamoto Yuichi, Fadlullah Zubair Md, Nishiyama Hiroki, Kato Nei, A survey on network methodologies for real-time analytics of massive IoT data and open research issues IEEE Commun. Surv. Tutor., 19 (3) (2017), pp. 1457-1477 DOI: https://doi.org/10.1109/COMST.2017.2694469
- Rashi Bansai, Nishant Gaur & Shailendra Narayan Singh 2016, ‘Outlier Detection: Applications and techniques in Data Mining,’ IEEE Conference on Cloud System and Big Data Engineering, pp. 373- 377. DOI: https://doi.org/10.1109/CONFLUENCE.2016.7508146
- Christy, A & Meera Gandhi, G 2015, ‘Cluster Based Outlier Detection Algorithm for Healthcare Data’, Elsevier, vol. 50, pp. 209-215. DOI: https://doi.org/10.1016/j.procs.2015.04.058
- Manish Gupta, Jing Gao, Charu C Aggarwal & Jiawei Han 2014, ‘Outlier Detection for Temporal Data: A Survey’, IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 9, pp. 2250-2267. DOI: https://doi.org/10.1109/TKDE.2013.184
- Xiaodong Zhu, Ji Zhang, Hongzhou Li, Philippe Fournier-Viger, Jerry Chun-Wei Lin & Liang Chang 2017, ‘FRIOD: A Deeply Integrated Feature-Rich Interactive System for Effective and Efficient Outlier Detection’, Access IEEE, vol. 5, pp. 25682-25695. DOI: https://doi.org/10.1109/ACCESS.2017.2771237
- Guojun Gan & Michael Kwok-PoNg 2017, ‘k-means clustering with outlier removal’, Pattern Recognition Letters, vol. 90, pp. 8-14. DOI: https://doi.org/10.1016/j.patrec.2017.03.008
- Erhan Guven & Anna L Buczak 2013, ‘An OpenCL Framework for Fuzzy Associative Classification and its Application to Disease Prediction’, Procedia Computer Science, vol. 20, pp. 362-367. DOI: https://doi.org/10.1016/j.procs.2013.09.287
- Gyorgy J Simon, Caraballo, J, Terry M Therneau, Steven S Cha, Regina Castro, M & Peter W Li 2015, ‘Extending Association Rule Summarization Techniques to Assess Risk of Diabetes Mellitus’, IEEE Transactions on Knowledge And Data Engineering, vol. 27, no. 1, pp. 130-141. DOI: https://doi.org/10.1109/TKDE.2013.76
- Sanz, J, Galar, M, Jurio, A, Brugos, A, Pagola, M & Bustince, H 2014, ‘Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system’, Appl. Soft Computing, vol. 20, pp. 103-111. DOI: https://doi.org/10.1016/j.asoc.2013.11.009
- Padmavathi, J 2011, ‘A Comparative study on Breast Cancer Prediction Using RBF and MLP’, International Journal of Scientific & Engineering Research, vol. 2, no. 1, ISSN 2229-5518
- Shelly Gupta, Dharminder Kumar &Anand Sharma 2011, ‘Data mining Classification techniques applied for breast cancer diagnosis and prognosis’, Indian Journal of Computer Science and Engineering (IJCSE), ISSN : 0976-5166, vol. 2 no. 2.
- Rupa Bagdi & Pramod Patil 2012, ‘Diagnosis of Diabetes Using OLAP and Data Mining Integration’, International Journal of Computer Science & Communication Networks, vol. 2, no. 3, pp. 314- 322.
- Lavanya, D & Usha Rani, K 2011, ‘Analysis of Feature Selection With Classfication: Breast Cancer Datasets’, Indian Journal of Computer Science and Engineering (IJCSE), ISSN : 0976-5166, vol. 2, no. 5 .
- Deng, Z., Zhu, X., Cheng, D., Zong, M., & Zhang, S. (2016). Efficient k NN classification algorithm for big data. Neurocomputing, 195, 143-148. doi: 10.1016/j.neucom.2015.08.112 DOI: https://doi.org/10.1016/j.neucom.2015.08.112
- Mondal, D., Kole, D., & Roy, K. (2017). Gradation of yellow mosaic virus disease of okra and bitter gourd based on entropy based binning and Naive Bayes classifier after identification of leaves. Computers And Electronics In Agriculture, 142, 485-493. doi: 10.1016/j.compag.2017.11.024 DOI: https://doi.org/10.1016/j.compag.2017.11.024
- Suryawati, E., Pardede, H., Zilvan, V., Ramdan, A., Krisnandi, D., & Heryana, A. et al. (2021). Unsupervised feature learning-based encoder and adversarial networks. Journal Of Big Data, 8(1). doi: 10.1186/s40537-021-00508-9 http://nsl.cs.unb.ca DOI: https://doi.org/10.1186/s40537-021-00508-9