A Comprehensive Survey of Various Machine Learning Techniques to Counter Security Issues Related to Mobile Malwares Survey Of machine learning in mobile malware Section Articles


Ahmad Jamal
Rachana Jaiswal
Shabnam Sayyad
Prajjawal Pandit
Farook Sayyad


Malware has been used to attack mobile devices since since it first appeared. The two main types of independent mobile malware attacks are mobile fraud apps and embedded hazardous apps. If one wishes to successfully fight against the cyber dangers posed by mobile malware, a detailed understanding of the permissions specified in apps and API requests is important. This study uses permission requests and API calls to build a powerful categorization model. Android applications use a wide variety of APIs, therefore we've developed three alternative categorization strategies: ambiguous, dangerous, and disruptive, to make it simpler to identify harmful apps. The findings suggest that dangerous apps employ a different set of API calls than benign ones, which demonstrates that mobile malware frequently requests detrimental permissions to access sensitive data. This article provides a thorough literature evaluation of numerous strategies for addressing android malware and associated security issues. The many techniques used to combat malware in the Android operating system are analysed in this article. According to this study, Support Vector Machine and Convolution Neural Network are the most accurate machine learning algorithms for classifying and predicting malware in the Android operating system.


How to Cite
Jamal, A. ., Jaiswal, R., Sayyad, S. ., Pandit, P., & Sayyad, F. (2022). A Comprehensive Survey of Various Machine Learning Techniques to Counter Security Issues Related to Mobile Malwares: Survey Of machine learning in mobile malware. International Journal of Next-Generation Computing, 13(3). https://doi.org/10.47164/ijngc.v13i3.807


  1. X. Liu, Y. Lin, H. Li and J. Zhang, "A novel method for malware detection on ML-based visualization technique", Computers & Security, vol. 89, p. 101682, 2020. Available: 10.1016/j.cose.2019.101682 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.cose.2019.101682
  2. P. Palumbo, L. Sayfullina, D. Komashinskiy, E. Eirola and J. Karhunen, "A pragmatic android malware detection procedure", Computers & Security, vol. 70, pp. 689-701, 2017. Available: 10.1016/j.cose.2017.07.013 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.cose.2017.07.013
  3. R. Kumar, X. Zhang, W. Wang, R. Khan, J. Kumar and A. Sharif, "A Multimodal Malware Detection Technique for Android IoT Devices Using Various Features", IEEE Access, vol. 7, pp. 64411-64430, 2019. Available: 10.1109/access.2019.2916886 DOI: https://doi.org/10.1109/ACCESS.2019.2916886
  4. A. Feizollah, N. Anuar, R. Salleh, G. Suarez-Tangil and S. Furnell, "AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection", Computers & Security, vol. 65, pp. 121-134, 2017. Available: 10.1016/j.cose.2016.11.007 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.cose.2016.11.007
  5. G. D’Angelo, M. Ficco and F. Palmieri, "Association rule-based malware classification using common subsequences of API calls", Applied Soft Computing, vol. 105, p. 107234, 2021. Available: 10.1016/j.asoc.2021.107234 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.asoc.2021.107234
  6. A. Martín, V. Rodríguez-Fernández and D. Camacho, "CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains", Engineering Applications of Artificial Intelligence, vol. 74, pp. 121-133, 2018. Available: 10.1016/j.engappai.2018.06.006 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.engappai.2018.06.006
  7. Kapoor, A., Gupta, A., Gupta, R., Tanwar, S., Sharma, G. and Davidson, I.E., 2021. Ransomware detection, avoidance, and mitigation scheme: a review and future directions. Sustainability, 14(1), p.8. DOI: https://doi.org/10.3390/su14010008
  8. H. Zhu, Z. You, Z. Zhu, W. Shi, X. Chen and L. Cheng, "DroidDet: Effective and robust detection of android malware using static analysis along with rotation forest model", Neurocomputing, vol. 272, pp. 638-646, 2018. Available: 10.1016/j.neucom.2017.07.030 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.neucom.2017.07.030
  9. K. Kong, Z. Zhang, Z. Yang and Z. Zhang, "FCSCNN: Feature centralized Siamese CNN-based android malware identification", Computers & Security, vol. 112, p. 102514, 2022. Available: 10.1016/j.cose.2021.102514 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.cose.2021.102514
  10. M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh and A. Awajan, "Intelligent mobile malware detection using permission requests and API calls", Future Generation Computer Systems, vol. 107, pp. 509-521, 2020. Available: 10.1016/j.future.2020.02.002 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.future.2020.02.002
  11. A. Pektaş and T. Acarman, "Learning to detect Android malware via opcode sequences", Neurocomputing, vol. 396, pp. 599-608, 2020. Available: 10.1016/j.neucom.2018.09.102 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.neucom.2018.09.102
  12. Z. Rehman et al., "Machine learning-assisted signature and heuristic-based detection of malwares in Android devices", Computers & Electrical Engineering, vol. 69, pp. 828-841, 2018. Available: 10.1016/j.compeleceng.2017.11.028 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.compeleceng.2017.11.028
  13. S. Jeon and J. Moon, "Malware-Detection Method with a Convolutional Recurrent Neural Network Using Opcode Sequences", Information Sciences, vol. 535, pp. 1-15, 2020. Available: 10.1016/j.ins.2020.05.026 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.ins.2020.05.026
  14. S. Millar, N. McLaughlin, J. Martinez del Rincon and P. Miller, "Multi-view deep learning for zero-day Android malware detection", Journal of Information Security and Applications, vol. 58, p. 102718, 2021. Available: 10.1016/j.jisa.2020.102718 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.jisa.2020.102718
  15. V. Syrris and D. Geneiatakis, "On machine learning effectiveness for malware detection in Android OS using static analysis data", Journal of Information Security and Applications, vol. 59, p. 102794, 2021. Available: 10.1016/j.jisa.2021.102794 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.jisa.2021.102794
  16. F. Idrees, M. Rajarajan, M. Conti, T. Chen and Y. Rahulamathavan, "PIndroid: A novel Android malware detection system using ensemble learning methods", Computers & Security, vol. 68, pp. 36-46, 2017. Available: 10.1016/j.cose.2017.03.011 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.cose.2017.03.011
  17. S. Sasidharan and C. Thomas, "ProDroid — An Android malware detection framework based on profile hidden Markov model", Pervasive and Mobile Computing, vol. 72, p. 101336, 2021. Available: 10.1016/j.pmcj.2021.101336 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.pmcj.2021.101336
  18. Z. Liu, R. Wang, N. Japkowicz, D. Tang, W. Zhang and J. Zhao, "Research on unsupervised feature learning for Android malware detection based on Restricted Boltzmann Machines", Future Generation Computer Systems, vol. 120, pp. 91-108, 2021. Available: 10.1016/j.future.2021.02.015 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.future.2021.02.015
  19. R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian and M. Conti, "Similarity-based Android malware detection using Hamming distance of static binary features", Future Generation Computer Systems, vol. 105, pp. 230-247, 2020. Available: 10.1016/j.future.2019.11.034 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.future.2019.11.034
  20. M. Amin, T. Tanveer, M. Tehseen, M. Khan, F. Khan and S. Anwar, "Static malware detection and attribution in android byte-code through an end-to-end deep system", Future Generation Computer Systems, vol. 102, pp. 112-126, 2020. Available: 10.1016/j.future.2019.07.070 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.future.2019.07.070
  21. X. Luo, J. Li, W. Wang, Y. Gao and W. Zhao, "Towards improving detection performance for malware with a correntropy-based deep learning method", Digital Communications and Networks, vol. 7, no. 4, pp. 570-579, 2021. Available: 10.1016/j.dcan.2021.02.003 [Accessed 6 January 2022]. DOI: https://doi.org/10.1016/j.dcan.2021.02.003