Performance Comparison of Randomized and Non-Randomized Learning Algorithms based Recommender Systems

##plugins.themes.academic_pro.article.main##

Maryam Nadeem
Mohammed Wasid
Mohammad Nadeem
Mohammed Talha Alam
Shahab Saquib Sohail
Shakil
Syed Ubaid
Sana Shahab

Abstract

Recommender System (RS) is an information filtering software tool that provides relevant recommendations to users on various products. Finding the preference of users on products is the core component of RS. Most of the available RS datasets are complex enough to represent the user preferences and usually require a lot of processing before their utilization. On the other hand, selecting an appropriate learning algorithm for making relevant recommendations is a complex task. In this paper, we perform various pre-processing steps on a movie dataset to find the key features that help us to identify the actual user preferences. Moreover, we perform a comparative analysis of various randomized and non-randomized learning algorithms by utilizing these features to identify the best learning algorithm. Our study reinforces the superiority of randomized learning algorithms over non-randomized ones on MovieLens dataset.

##plugins.themes.academic_pro.article.details##

How to Cite
Nadeem, M., Wasid, M., Nadeem, M., Mohammed Talha Alam, Shahab Saquib Sohail, Shakil, Syed Ubaid, & Sana Shahab. (2022). Performance Comparison of Randomized and Non-Randomized Learning Algorithms based Recommender Systems. International Journal of Next-Generation Computing, 13(3). https://doi.org/10.47164/ijngc.v13i3.820

References

  1. Adugna, T., Xu, W., and Fan, J. 2022. Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution fy-3c images. Remote Sensing 14, 3, 574. DOI: https://doi.org/10.3390/rs14030574
  2. Ajesh, A., Nair, J., and Jijin, P. 2016. A random forest approach for rating-based recommender system. In 2016 International conference on advances in computing, communications and informatics (ICACCI). IEEE, 1293–1297. DOI: https://doi.org/10.1109/ICACCI.2016.7732225
  3. Al-Shamri, M. Y. H. and Bharadwaj, K. K. 2008. Fuzzy-genetic approach to recommender systems based on a novel hybrid user model. Expert systems with applications 35, 3, 1386–1399. DOI: https://doi.org/10.1016/j.eswa.2007.08.016
  4. Alhijawi, B., Awajan, A., and Fraihat, S. 2022. Survey on the objectives of recommender system: Measures, solutions, evaluation methodology, and new perspectives. ACM Computing Surveys (CSUR). DOI: https://doi.org/10.1145/3527449
  5. Alodhaibi, K., Brodsky, A., and Mihaila, G. A. 2011. A randomized algorithm for maximizing the diversity of recommendations. In 2011 44th Hawaii International Conference on System Sciences. IEEE, 1–10. DOI: https://doi.org/10.1109/HICSS.2011.25
  6. Bartz, K., Murthi, V., and Sebastian, S. 2006. Logistic regression and collaborative filtering for sponsored search term recommendation. In Second workshop on sponsored search auctions. Vol. 5. Citeseer.
  7. Baskota, A. and Ng, Y.-K. 2018. A graduate school recommendation system using the multiclass support vector machine and knn approaches. In 2018 IEEE International Conference on Information Reuse and Integration (IRI). IEEE, 277–284. DOI: https://doi.org/10.1109/IRI.2018.00050
  8. Breiman, L. 2001. Random forests. Machine learning 45, 1, 5–32. DOI: https://doi.org/10.1023/A:1010933404324
  9. Freedman, D. A. 2008. Randomization does not justify logistic regression. Statistical Science, 237–249. DOI: https://doi.org/10.1214/08-STS262
  10. Harper, F. M. and Konstan, J. A. 2015. The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis) 5, 4, 1–19. DOI: https://doi.org/10.1145/2827872
  11. Hu, C., Chen, Y., Hu, L., and Peng, X. 2018. A novel random forests based class incremental learning method for activity recognition. Pattern Recognition 78, 277–290. DOI: https://doi.org/10.1016/j.patcog.2018.01.025
  12. Huang, F. L. 2022. Alternatives to logistic regression models in experimental studies. The Journal of Experimental Education 90, 1, 213–228. DOI: https://doi.org/10.1080/00220973.2019.1699769
  13. Itoo, F., Singh, S., et al. 2021. Comparison and analysis of logistic regression, na¨ıve bayes and knn machine learning algorithms for credit card fraud detection. International Journal of Information Technology 13, 4, 1503–1511. DOI: https://doi.org/10.1007/s41870-020-00430-y
  14. Jackins, V., Vimal, S., Kaliappan, M., and Lee, M. Y. 2021. Ai-based smart prediction of clinical disease using random forest classifier and naive bayes. The Journal of Supercomputing 77, 5, 5198–5219. DOI: https://doi.org/10.1007/s11227-020-03481-x
  15. Karp, R. M. 1991. An introduction to randomized algorithms. Discrete Applied Mathematics 34, 1-3, 165–201. DOI: https://doi.org/10.1016/0166-218X(91)90086-C
  16. Kaur, A. and Kumar, K. 2022. A comprehensive survey on machine learning approaches for dynamic spectrum access in cognitive radio networks. Journal of Experimental & Theoretical Artificial Intelligence 34, 1, 1–40. DOI: https://doi.org/10.1080/0952813X.2020.1818291
  17. Lau, C. W. 2011. News recommendation system using logistic regression and naive bayes classifiers. Citeseer.–2011 .
  18. Lu, X., Ming, L., Hu, T., and Fan, B. 2018. Collaborative learning-based clustered support vector machine for modeling of nonlinear processes subject to noise. IEEE Transactions on Systems, Man, and Cybernetics: Systems 50, 12, 5162–5171. DOI: https://doi.org/10.1109/TSMC.2018.2867238
  19. Machado, M. R. and Karray, S. 2022. Assessing credit risk of commercial customers using hybrid machine learning algorithms. Expert Systems with Applications 200, 116889. DOI: https://doi.org/10.1016/j.eswa.2022.116889
  20. Martinez-Gil, J., Freudenthaler, B., and Natschl¨ager, T. 2018. Recommendation of job offers using random forests and support vector machines. In Proceedings of the of the EDBT/ICDT joint conference.
  21. Mehta, S. J. and Javia, J. 2015. Threshold based knn for fast and more accurate recommendations. In 2015 IEEE 2nd International Conference on Recent Trends in Information Systems (ReTIS). IEEE, 109–113. DOI: https://doi.org/10.1109/ReTIS.2015.7232862
  22. Motwani, R. and Raghavan, P. 1996. Randomized algorithms. ACM Computing Surveys (CSUR) 28, 1, 33–37. DOI: https://doi.org/10.1145/234313.234327
  23. Nanni, L., Lumini, A., and Brahnam, S. 2017. Ensemble of texture descriptors for face recognition obtained by varying feature transforms and preprocessing approaches. Applied Soft Computing 61, 8–16. DOI: https://doi.org/10.1016/j.asoc.2017.07.057
  24. Nhu, V.-H., Zandi, D., Shahabi, H., Chapi, K., Shirzadi, A., Al-Ansari, N., Singh, S. K., Dou, J., and Nguyen, H. 2020. Comparison of support vector machine, bayesian logistic regression, and alternating decision tree algorithms for shallow landslide susceptibility mapping along a mountainous road in the west of iran. Applied Sciences 10, 15, 5047. DOI: https://doi.org/10.3390/app10155047
  25. Panagiotakis, C., Papadakis, H., and Fragopoulou, P. 2021. A dual hybrid recommender system based on scor and the random forest. Computer Science and Information Systems 18, 1, 115–128. DOI: https://doi.org/10.2298/CSIS200515046P
  26. Park, H.-S., Yoo, J.-O., and Cho, S.-B. 2006. A context-aware music recommendation system using fuzzy bayesian networks with utility theory. In International conference on Fuzzy systems and knowledge discovery. Springer, 970–979. DOI: https://doi.org/10.1007/11881599_121
  27. Parra, D., Karatzoglou, A., Amatriain, X., and Yavuz, I. 2011. Implicit feedback recommendation via implicit-to-explicit ordinal logistic regression mapping. Proceedings of the CARS-2011 5.
  28. Pisner, D. A. and Schnyer, D. M. 2020. Support vector machine. In Machine learning. Elsevier, 101–121. DOI: https://doi.org/10.1016/B978-0-12-815739-8.00006-7
  29. Quevedo, J. R., Monta˜n´es, E., Ranilla, J., and D´ıaz, I. 2010. Ranked tag recommendation systems based on logistic regression. In International Conference on Hybrid Artificial Intelligence Systems. Springer, 237–244. DOI: https://doi.org/10.1007/978-3-642-13769-3_29
  30. Samuel, A. L. 1967. Some studies in machine learning using the game of checkers. ii—recent progress. IBM Journal of research and development 11, 6, 601–617. DOI: https://doi.org/10.1147/rd.116.0601
  31. Shehab, M., Abualigah, L., Shambour, Q., Abu-Hashem, M. A., Shambour, M. K. Y., Alsalibi, A. I., and Gandomi, A. H. 2022. Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine 145, 105458. DOI: https://doi.org/10.1016/j.compbiomed.2022.105458
  32. Tan, P.-N., Steinbach, M., and Kumar, V. 2016. Introduction to data mining. Pearson Education India.
  33. Theocharous, G., Thomas, P. S., and Ghavamzadeh, M. 2015. Personalized ad recommendation systems for life-time value optimization with guarantees. In Twenty-Fourth International Joint Conference on Artificial Intelligence. DOI: https://doi.org/10.1145/2740908.2741998
  34. Valdiviezo-Diaz, P., Ortega, F., Cobos, E., and Lara-Cabrera, R. 2019. A collaborative filtering approach based on na¨ıve bayes classifier. IEEE Access 7, 108581–108592. DOI: https://doi.org/10.1109/ACCESS.2019.2933048
  35. Wang, K. and Tan, Y. 2011. A new collaborative filtering recommendation approach based on naive bayesian method. In International Conference in Swarm Intelligence. Springer, 218–227. DOI: https://doi.org/10.1007/978-3-642-21524-7_26
  36. Wang, Y., Feng, D., Li, D., Chen, X., Zhao, Y., and Niu, X. 2016. A mobile recommendation system based on logistic regression and gradient boosting decision trees. In 2016 international joint conference on neural networks (IJCNN). IEEE, 1896–1902. DOI: https://doi.org/10.1109/IJCNN.2016.7727431
  37. Wasid, M. and Ali, R. 2017. Context similarity measurement based on genetic algorithm for improved recommendations. In Applications of Soft Computing for the Web. Springer, 11–29. DOI: https://doi.org/10.1007/978-981-10-7098-3_2
  38. Wasid, M. and Ali, R. 2019. Fuzzy side information clustering-based framework for effective recommendations. Computing and Informatics 38, 3, 597–620. DOI: https://doi.org/10.31577/cai_2019_3_597
  39. Wasid, M. and Ali, R. 2020. Multi-criteria clustering-based recommendation using mahalanobis distance. International Journal of Reasoning-based Intelligent Systems 12, 2, 96–105. DOI: https://doi.org/10.1504/IJRIS.2020.10028336
  40. Wasid, M., Ali, R., and Kant, V. 2017. Particle swarm optimisation-based contextual recommender systems. International Journal of Swarm Intelligence 3, 2-3, 170–191. DOI: https://doi.org/10.1504/IJSI.2017.10008737
  41. Wasid, M. and Kant, V. 2015. A particle swarm approach to collaborative filtering based recommender systems through fuzzy features. Procedia Computer Science 54, 440–448. DOI: https://doi.org/10.1016/j.procs.2015.06.051
  42. Wasid, M., Kant, V., and Ali, R. 2016. Frequency-based similarity measure for contextaware recommender systems. In 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 627–632. DOI: https://doi.org/10.1109/ICACCI.2016.7732116
  43. Wickramasinghe, I. and Kalutarage, H. 2021. Naive bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing 25, 3, 2277–2293. DOI: https://doi.org/10.1007/s00500-020-05297-6
  44. Wietreck, N. 2018. Towards a new generation of movie recommender systems: A mood based approach.
  45. Xia, Z., Dong, Y., and Xing, G. 2006. Support vector machines for collaborative filtering. In Proceedings of the 44th annual Southeast regional conference. 169–174. DOI: https://doi.org/10.1145/1185448.1185487
  46. Zhang, H.-R. and Min, F. 2016. Three-way recommender systems based on random forests. Knowledge-Based Systems 91, 275–286. DOI: https://doi.org/10.1016/j.knosys.2015.06.019
  47. Zhang, L. and Suganthan, P. N. 2016. A survey of randomized algorithms for training neural networks. Information Sciences 364, 146–155. DOI: https://doi.org/10.1016/j.ins.2016.01.039
  48. Zhang, L., Varadarajan, J., Nagaratnam Suganthan, P., Ahuja, N., and Moulin, P. 2017. Robust visual tracking using oblique random forests. In Proceedings of the IEEE conference on computer vision and pattern recognition. 5589–5598. DOI: https://doi.org/10.1109/CVPR.2017.617
  49. Zhong, M., Zhang, H., Yu, C., Jiang, J., and Duan, X. 2022. Application of machine learning in predicting the risk of postpartum depression: A systematic review. Journal of Affective Disorders. DOI: https://doi.org/10.1016/j.jad.2022.08.070