A Systematic Analysis of CMR Segmentation Using Deep Learning

##plugins.themes.academic_pro.article.main##

YOGITA PARIKH
Dr. Hasmukh Koringa

Abstract

This review provides an overview of cardiac segmentation by using Deep learning for MR images. Cardiac MR is widely used due to its unique capability as non invasive imaging. CMR images are used to derive cardiac indices to diagnose various cardiac diseases by segmentation of heart chambers. There are number of challenges in automatic cardiac MR segmentation due to characteristics of MR images because of continuous movement of heart. Now days, deep learning become widely used technique to segment heart chambers for efficient and accurate results. In this review, we provide overview of publically available CMRI datasets, descriptions of currently available methods to segment Left ventricle, Right ventricle, and Myocardium. After reviewing various techniques, we describe limitations and possible solutions. We conclude deep learning based segmentation issues in the current
approaches.

##plugins.themes.academic_pro.article.details##

How to Cite
PARIKH, Y., & Dr. Hasmukh Koringa. (2022). A Systematic Analysis of CMR Segmentation Using Deep Learning. International Journal of Next-Generation Computing, 13(3). https://doi.org/10.47164/ijngc.v13i3.825

References

  1. Abdeltawab, H., Khalifa, F., Taher, F., Alghamdi, N. S., Ghazal, M., Beache, G., Mohamed, T., Keynton, R., and El-Baz”, A. 2020. ”a deep learning-based approach for automatic segmentation and quantification of the left ventricle from cardiac cine mr images”. Computerized Medical Imaging and Graphics 81, 101717. DOI: https://doi.org/10.1016/j.compmedimag.2020.101717
  2. Andreopoulos, A. and Tsotsos’, J. K. 2008. ’efficient and generalizable statistical models of shape and appearance for analysis of cardiac mri’. Medical Image Analysis 12, 3, 335–357. Avendi, M., Kheradvar, A., and Jafarkhani”, H. 2016. ”a combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri”. Medical Image Analysis 30, 108–119. DOI: https://doi.org/10.1016/j.media.2016.01.005
  3. Avendi, M. R., Kheradvar, A., and Jafarkhani, H. 2017. Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn Reson Med 78, 6 (Feb.), 2439–2448. DOI: https://doi.org/10.1002/mrm.26631
  4. Bai, W. and Sinclair. 2018. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonance 20, 1 (Sept.), 65. DOI: https://doi.org/10.1186/s12968-018-0471-x
  5. Bernard, O., Lalande, A., and Zotti. 2018. ’deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: Is the problem solved?’. ’IEEE Transactions on Medical Imaging’ 37, 11, 2514–2525. DOI: https://doi.org/10.1109/TMI.2018.2837502
  6. Budai, A., Suhai, F. I., Csorba, K., Toth, A., Szabo, L., Vago, H., and Merkely”, B. 2020. ”fully automatic segmentation of right and left ventricle on short-axis cardiac mri images”. Computerized Medical Imaging and Graphics 85, 101786. DOI: https://doi.org/10.1016/j.compmedimag.2020.101786
  7. Campello, V. M., Gkontra, P., and Izquierdo. 2021. ”multi-centre, multi-vendor and multi-disease cardiac segmentation: The mm challenge”. IEEE Transactions on Medical Imaging 40, 12, 3543–3554. DOI: https://doi.org/10.1109/TMI.2021.3090082
  8. Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W., and Rueckert, D. 2020. Deep learning for cardiac image segmentation: A review. Front Cardiovasc Med 7, 25. DOI: https://doi.org/10.3389/fcvm.2020.00025
  9. Chen, M., Fang, L., and Liu, H. 2019. ”fr-net: Focal loss constrained deep residual net- works for segmentation of cardiac mri”. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 764–767. DOI: https://doi.org/10.1109/ISBI.2019.8759556
  10. Curiale, A. H., Colavecchia, F. D., Kaluza, P., Isoardi, R. A., and Mato, G. 2017. ”automatic myocardial segmentation by using a deep learning network in cardiac mri”. In 2017 XLIII Latin American Computer Conference (CLEI). 1–6. DOI: https://doi.org/10.1109/CLEI.2017.8226420
  11. Dangi, S., Cahill, N., and Linte, C. A. 2017. Integrating atlas and graph cut methods for left ventricle segmentation from cardiac cine mri. In Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges, T. Mansi, K. McLeod, M. Pop, K. Rhode, M. Sermesant, and A. Young, Eds. Springer International Publishing, Cham, 76–86. DOI: https://doi.org/10.1007/978-3-319-52718-5_9
  12. Dangi, S., Yaniv, Z., and Linte, C. 2019. ”left ventricle segmentation and quantification from cardiac cine mr images via multi-task learning”. Statistical atlases and computational models of the heart. STACOM (Workshop) 11395, 21–31. DOI: https://doi.org/10.1007/978-3-030-12029-0_3
  13. Duan, J., Bello, G., Schlemper, J., Bai, W., Dawes, T. J. W., Biffi, C., de Marvao, A., Doumoud, G., O’Regan, D. P., and Rueckert, D. 2019. ”automatic 3d bi- ventricular segmentation of cardiac images by a shape-refined multi- task deep learning approach”. IEEE Transactions on Medical Imaging 38, 9, 2151–2164. DOI: https://doi.org/10.1109/TMI.2019.2894322
  14. Emad, O., Yassine, I. A., and Fahmy, A. S. 2015. ”automatic localization of the left ventricle in cardiac mri images using deep learning”. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 683–686. DOI: https://doi.org/10.1109/EMBC.2015.7318454
  15. Graves, C. V., Moreno, R. A., Rebelo, M. S., Nomura, C. H., and Gutierrez, M. A. 2020. Improving the generalization of deep learning methods to segment the left ventricle in short axis MR images. Annu Int Conf IEEE Eng Med Biol Soc 2020, 1203–1206. DOI: https://doi.org/10.1109/EMBC44109.2020.9175256
  16. Isensee, F., Jaeger, P. F., Full, P. M., Wolf, I., Engelhardt, S., and Maier-Hein, K. H. 2018. Automatic cardiac disease assessment on cine-mri via time-series segmenta- tion and domain specific features. In Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges, M. Pop, M. Sermesant, P.-M. Jodoin, A. Lalande, DOI: https://doi.org/10.1007/978-3-319-75541-0_13
  17. X. Zhuang, G. Yang, A. Young, and O. Bernard, Eds. Springer International Publishing, Cham, 120–129.
  18. kaggle second annual data science bowl, T. . 2015. ’kaggle’. www.kaggle.com/c/second-annual-data-science-bowl.
  19. Li, Z., Lou, Y., Yan, Z., Al Aref, S., Min, J. K., Axel, L., and Metaxas, D. N. 2019. ”fully automatic segmentation of short-axis cardiac mri using modified deep layer aggregation”. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 793–797. DOI: https://doi.org/10.1109/ISBI.2019.8759516
  20. Lin, A., Wu, J., and Yang, X. 2020. ”a data augmentation approach to train fully convolu- tional networks for left ventricle segmentation”. Magnetic Resonance Imaging 66, 152–164. DOI: https://doi.org/10.1016/j.mri.2019.08.004
  21. Luo, G., Dong, S., Wang, K., and Zhang, H. 2016. ”cardiac left ventricular volumes prediction method based on atlas location and deep learning”. In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 1604–1610. DOI: https://doi.org/10.1109/BIBM.2016.7822759
  22. Lynch, M., Ghita, O., and Whelan, P. F. 2006. Automatic segmentation of the left ventricle cavity and myocardium in MRI data. Comput. Biol. Medicine 36, 4, 389–407. DOI: https://doi.org/10.1016/j.compbiomed.2005.01.005
  23. Nasr-Esfahani. 2018. ”left ventricle segmentation in cardiac mr images using fully convolu- tional network”. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 1275–1278. DOI: https://doi.org/10.1109/EMBC.2018.8512536
  24. Patravali, J., Jain, S., and Chilamkurthy, S. 2018. ”2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation”. 130–139. DOI: https://doi.org/10.1007/978-3-319-75541-0_14
  25. Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S. E., and Frangi, A. F. 2016. A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. MAGMA 29, 2 (Jan.), 155–195. DOI: https://doi.org/10.1007/s10334-015-0521-4
  26. Penso, M. and Moccia. 2021. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network. Comput Methods Programs Biomed 204, 106059. DOI: https://doi.org/10.1016/j.cmpb.2021.106059
  27. Petersen, S. E. and Matthews. 2016. UK biobank’s cardiovascular magnetic resonance protocol. Journal of Cardiovascular Magnetic Resonance 18, 1 (Feb.), 8. DOI: https://doi.org/10.1186/s12968-016-0227-4
  28. Petitjean, C. and Dacher, J.-N. 2010. A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15, 2 (Dec.), 169–184. DOI: https://doi.org/10.1016/j.media.2010.12.004
  29. Petitjean, C. and Zuluaga. 2014. Right ventricle segmentation from cardiac MRI: a collation study. Med Image Anal 19, 1 (Oct.), 187–202. DOI: https://doi.org/10.1016/j.media.2014.10.004
  30. Poudel, R. P. K., Lamata, P., and Montana”, G. 2016. ”recurrent fully convolutional neural networks for multi-slice MRI”, cardiac segmentation. CoRR abs/1608.03974. DOI: https://doi.org/10.1007/978-3-319-52280-7_8
  31. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., and Wright, G. 2009. Evaluation framework for algorithms segmenting short axis cardiac mri. The MIDAS Journal . DOI: https://doi.org/10.54294/g80ruo
  32. Simantiris, G. and Tziritas, G. 2020. ”cardiac mri segmentation with a dilated cnn incor- porating domain-specific constraints”. IEEE Journal of Selected Topics in Signal Process- ing 14, 6, 1235–1243. DOI: https://doi.org/10.1109/JSTSP.2020.3013351
  33. Suinesiaputra, A. and Cowan. 2013. A collaborative resource to build consensus for auto- mated left ventricular segmentation of cardiac MR images. Med Image Anal 18, 1 (Sept.), 50–62. DOI: https://doi.org/10.1016/j.media.2013.09.001
  34. Tan, L. K., Liew, Y. M., Lim, E., and McLaughlin, R. A. 2016. ”cardiac left ventricle seg- mentation using convolutional neural network regression”. In 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). 490–493. DOI: https://doi.org/10.1109/IECBES.2016.7843499
  35. Tan, L. K. and McLaughlin. 2018. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J Magn Reson Imaging 48, 1 (Jan.), 140–152. DOI: https://doi.org/10.1002/jmri.25932