Fog Data Processing and Analytics for Agriculture IoT Data Streams
##plugins.themes.academic_pro.article.main##
Abstract
Pervasiveness rise of smart devices and sensor-based gadgets in building IoT systems is increasing unprecedented in technological innovations. The emergence of the Internet of Things technologies reshaped nearly every sector including agriculture. The agriculture sector contributes a significant figure to the country’s economy and it has a wide-ranging involvement in the advancement of human civilization. In the current scenario, the proper techniques of farming are needed as utmost propriety for better crop quality and quantity in a high-competition market. Crop disease prediction is key to shattering the problems of the farmer, reducing the usage of insecticides, and pesticides, and improving the financial conditions of the farmer. The Internet of Things and data analytics possess the ability to positively modernize the agricultural sector. However, Internet of Things-based applications needed to be deployed on a platform that offers real-time experience, reduced latency, and optimal bandwidth usage. Fog computing extends the computational power closer to the edge network where the devices reside and facilitate edge intelligence. In this paper, the fog importance, fog computing architecture along with the perceptions of data analysis in a fog environment, and emerging research challenges are discussed. Furthermore, in this paper an IoT-Fog based framework for the prediction of crop disease is proposed. The proposed framework consists of four phases, sensor layer, fog layer, cloud layer and End-user. The proposed framework may be beneficial in the farming domain for the analysis of crop disease prediction in the early stage and may reduce the chances of disease outbreaks in the field
##plugins.themes.academic_pro.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- M. S. Farooq, S. Riaz, A. Abid, T. Umer, and Y. Bin Zikria, “Role of iot technology in agriculture: A systematic literature review,” Electronics (Switzerland), vol. 9, no. 2. 2020. DOI: https://doi.org/10.3390/electronics9020319
- M. S. Mekala and P. Viswanathan, “A Survey: Smart agriculture IoT with cloud computing,” in 2017 International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS 2017, 2017, vol. 2017–Janua, pp. 1–7. DOI: https://doi.org/10.1109/ICMDCS.2017.8211551
- M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2932609
- A. M. U. D. Khanday, Q. R. Khan, and S. T. Rabani, “Detecting textual propaganda using machine learning techniques,” Baghdad Sci. J., vol. 18, no. 1, pp. 199–209, 2021.
- J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet Things J., vol. 4, no. 5, pp. 1125–1142, 2017. DOI: https://doi.org/10.1109/JIOT.2017.2683200
- A. D. Pathaka and J. V. Tembhurne, “Internet of Things: A Survey on IoT Protocols,” SSRN Electron. J., 2018. DOI: https://doi.org/10.2139/ssrn.3168575
- Aqeel-Ur-Rehman, A. Z. Abbasi, N. Islam, and Z. A. Shaikh, “A review of wireless sensors and networks’ applications in agriculture,” Comput. Stand. Interfaces, vol. 36, no. 2, pp. 263–270, 2014. DOI: https://doi.org/10.1016/j.csi.2011.03.004
- A. R. Dar and D. Ravindran, “Fog computing resource optimization: A review on current scenarios and resource management,” Baghdad Sci. J., vol. 16, no. 2, pp. 419–427, 2019. DOI: https://doi.org/10.21123/bsj.2019.16.2.0419
- A. R. Dar, D. Ravindran, and S. Islam, “Fog-based spider web algorithm to overcome latency in cloud computing,” Iraqi J. Sci., vol. 61, no. 7, pp. 1781–1790, 2020. DOI: https://doi.org/10.24996/ijs.2020.61.7.27
- Ankur Gupta, Purnendu Prabhat, & Deepak Garg. (2018). A Framework for the Smart-City Nerve Center. International Journal of Next-Generation Computing, 9(1), 73–79. https://doi.org/10.47164/ijngc.v9i1.139
- F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in MCC’12 - Proceedings of the 1st ACM Mobile Cloud Computing Workshop, 2012, pp. 13–15. DOI: https://doi.org/10.1145/2342509.2342513
- S. Islam, S. Jamwal, and M. H. Mir, “Leveraging Fog Computing for SmartInternet of ThingsCrop Monitoring Farming in Covid-19 Era,” Ann. R.S.C.B, vol. 25, no. 6, pp. 10410–10420, 2021.
- A. R. Dar and D. Ravindran, “A Comprehensive Study on Cloud Computing Paradigm,” Int. J. Adv. Res. Sci. Eng., vol. 7, no. 4, p. 8, 2018.
- A. Rashid Dar, D. Ravindran, and M. Ramya, “Smart & Scalable Cloud Computing: Towards the Green Initiatives in Education Sector,” 2017.
- K. Ashton, “That Internet of Things Thing,” RFID J., vol. 4986, 2009.
- M. Aazam and E. N. Huh, “Fog computing and smart gateway based communication for cloud of things,” in Proceedings - 2014 International Conference on Future Internet of Things and Cloud, FiCloud 2014, 2014, pp. 464–470. DOI: https://doi.org/10.1109/FiCloud.2014.83
- B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos, “Challenges and Opportunities in Edge Computing,” in Proceedings - 2016 IEEE International Conference on Smart Cloud, SmartCloud 2016, 2016, pp. 20–26. DOI: https://doi.org/10.1109/SmartCloud.2016.18
- A. M. U. D. Khanday, S. T. Rabani, Q. R. Khan, N. Rouf, and M. Mohi Ud Din, “Machine learning based approaches for detecting COVID-19 using clinical text data,” Int. J. Inf. Technol., vol. 12, no. 3, pp. 731–739, 2020. DOI: https://doi.org/10.1007/s41870-020-00495-9
- M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P. Sheth, “Machine learning for internet of things data analysis: a survey,” Digital Communications and Networks, vol. 4, no. 3. pp. 161–175, 2018. DOI: https://doi.org/10.1016/j.dcan.2017.10.002
- A. Rashid Dar and D. Ravindran, “Fog Computing: An Extended Version of Cloud Computing,” Int. J. Mod. Electron. Commun. Eng., 2019.
- K. P.Saharan and A. Kumar, “Fog in Comparison to Cloud: A Survey,” Int. J. Comput. Appl., vol. 122, no. 3, pp. 10–12, 2015. DOI: https://doi.org/10.5120/21679-4773
- W. Lee, K. Nam, H. G. Roh, and S. H. Kim, “A gateway based fog computing architecture for wireless sensors and actuator networks,” in International Conference on Advanced Communication Technology, ICACT, 2016, vol. 2016–March, pp. 210–213. DOI: https://doi.org/10.1109/ICACT.2016.7423332
- S. Agarwal, S. Yadav, and A. K. Yadav, “An Efficient Architecture and Algorithm for Resource Provisioning in Fog Computing,” Int. J. Inf. Eng. Electron. Bus., vol. 8, no. 1, pp. 48–61, 2016. DOI: https://doi.org/10.5815/ijieeb.2016.01.06
- F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog computing may help to save energy in cloud computing,” IEEE J. Sel. Areas Commun., vol. 34, no. 5, pp. 1728–1739, 2016. DOI: https://doi.org/10.1109/JSAC.2016.2545559
- M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, “Help your mobile applications with fog computing,” in 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops, SECON Workshops 2015, 2015, pp. 49–54. DOI: https://doi.org/10.1109/SECONW.2015.7328146
- M. Roopaei, P. Rad, and K. K. R. Choo, “Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging,” IEEE Cloud Comput., vol. 4, no. 1, pp. 10–15, 2017. DOI: https://doi.org/10.1109/MCC.2017.5
- M. Caria, J. Schudrowitz, A. Jukan, and N. Kemper, “Smart farm computing systems for animal welfare monitoring,” in 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2017 - Proceedings, 2017, pp. 152–157. DOI: https://doi.org/10.23919/MIPRO.2017.7973408
- E. Guardo, A. Di Stefano, A. La Corte, M. Sapienza, and M. Scatà, “A fog computing-based IoT framework for precision agriculture,” J. Internet Technol., vol. 19, no. 5, pp. 1401–1411, 2018.
- T. Nguyen Gia, L. Qingqing, J. Pena Queralta, Z. Zou, H. Tenhunen, and T. Westerlund, “Edge AI in Smart Farming IoT: CNNs at the Edge and Fog Computing with LoRa,” in IEEE AFRICON Conference, 2019, vol. 2019–Septe.
- T. C. Hsu, H. Yang, Y. C. Chung, and C. H. Hsu, “A Creative IoT agriculture platform for cloud fog computing,” Sustain. Comput. Informatics Syst., vol. 28, 2020. DOI: https://doi.org/10.1016/j.suscom.2018.10.006
- F. M. Ribeiro, R. Prati, R. Bianchi, and C. Kamienski, “A Nearest Neighbors based Data Filter for Fog Computing in IoT Smart Agriculture,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor 2020 - Proceedings, 2020, pp. 63–67. DOI: https://doi.org/10.1109/MetroAgriFor50201.2020.9277661
- A. Tsipis, A. Papamichail, G. Koufoudakis, G. Tsoumanis, S. E. Polykalas, and K. Oikonomou, “Latency-Adjustable Cloud/Fog Computing Architecture for Time-Sensitive Environmental Monitoring in Olive Groves,” AgriEngineering, vol. 2, no. 1, pp. 175–205, 2020. DOI: https://doi.org/10.3390/agriengineering2010011
- K. Lee, B. N. Silva, and K. Han, “Deep learning entrusted to fog nodes (DLEFN) based smart agriculture,” Appl. Sci., vol. 10, no. 4, 2020. DOI: https://doi.org/10.3390/app10041544
- U. Sakthi and J. D. Rose, “Smart agricultural knowledge discovery system using IoT technology and fog computing,” in Proceedings of the 3rd International Conference on Smart Systems and Inventive Technology, ICSSIT 2020, 2020, pp. 48–53. DOI: https://doi.org/10.1109/ICSSIT48917.2020.9214102
- M. Z. Haque and R. Islam, “A modern agricultural model based on IoT and fog-cloud computing algorithm,” Int. J. Comput. Sci. …, vol. 18, no. 9, pp. 78–91, 2020.
- L. K. Narayanan, P. Subbaiyah, I. Gururajan, and R. Sampathkumar, “IoT-Fog Integrated Voice of the Plant Based Smart Irrigation and Power Management System for Smart Farming,” vol. 8, no. 5, pp. 5411–5421, 2021.
- H. A. Alharbi and M. Aldossary, “Energy-Efficient Edge-Fog-Cloud Architecture for IoT-Based Smart Agriculture Environment,” IEEE Access, vol. 9, pp. 110480–110492, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3101397
- L. García, J. M. Jimenez, S. Sendra, J. Lloret, and P. Lorenz, “Multi-layer fog computing framework for constrained LoRa networks intended for water quality monitoring and precision agriculture systems,” in Proceedings of the 18th International Conference on Wireless Networks and Mobile Systems, WINSYS 2021, 2021, pp. 46–55. DOI: https://doi.org/10.5220/0010618300002999
- S. T. Rabani, Q. R. Khan, and A. M. Ud Din Khanday, “Detection of suicidal ideation on Twitter using machine learning & ensemble approaches,” Baghdad Sci. J., vol. 17, no. 4, pp. 1328–1339, 2020. DOI: https://doi.org/10.21123/bsj.2020.17.4.1328
- K. G. Liakos, P. Busato, D. Moshou, S. Pearson, and D. Bochtis, “Machine learning in agriculture: A review,” Sensors (Switzerland), vol. 18, no. 8. 2018. DOI: https://doi.org/10.3390/s18082674
- R. Z. Naeem, S. Bashir, M. F. Amjad, H. Abbas, and H. Afzal, “Fog computing in internet of things: Practical applications and future directions,” Peer-to-Peer Netw. Appl., vol. 12, no. 5, pp. 1236–1262, 2019. DOI: https://doi.org/10.1007/s12083-019-00728-0
- C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges,” IEEE Communications Surveys and Tutorials, vol. 20, no. 1. pp. 416–464, 2018. DOI: https://doi.org/10.1109/COMST.2017.2771153
- A. Yousefpour et al., “All one needs to know about fog computing and related edge computing paradigms: A complete survey,” Journal of Systems Architecture, vol. 98. pp. 289–330, 2019. DOI: https://doi.org/10.1016/j.sysarc.2019.02.009
- A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and R. Buyya, “Fog Computing: Principles, architectures, and applications,” in Internet of Things: Principles and Paradigms, 2016, pp. 61–75. DOI: https://doi.org/10.1016/B978-0-12-805395-9.00004-6
- G. Rahman and C. C. Wen, “Fog Computing, Applications, Security and Challenges, Review,” Int. J. Eng. Technol., vol. 7, no. 3, p. 1615, 2018. DOI: https://doi.org/10.14419/ijet.v7i3.12612