A Comparative Analysis of Deep Learning based Vehicle Detection Approaches

##plugins.themes.academic_pro.article.main##

Nikita Singhal
Dr Lalji Prasad

Abstract

Numerous traffic-related problems arise as a result of the exponential growth in the number of vehicles on the road. Vehicle detection is important in many smart transportation applications, including transportation planning, transportation management, traffic signal automation, and autonomous driving. Many researchers have spent a lot of time and effort on it over the last few decades, and they have achieved a lot. In this paper, we compared the performances of major deep learning models: Faster RCNN, YOLOv3, YOLOv4, YOLOv5, and SSD for vehicle detection with variable image size using two different vehicle detection datasets: Highway dataset and MIOTCD. The datasets that are most commonly used in this domain are also analyzed and reviewed. Additionally, we have
emphasized the opportunities and challenges in this domain for the future.

##plugins.themes.academic_pro.article.details##

Author Biographies

Nikita Singhal, Department of Computer Engineering , SIRT, Sage University

Nikita Singhal is an Assistant Professor in the Department of Computer
Engineering, Army Institute of Technology, Pune. She is pursuing her PhD in CSE from SAGE
University, Indore and received her MTech in Computer Science and Engineering from Defence
Institute of Technology (DU), Pune. She has more than ten years of academic and research
experience. Her research interests include deep learning, image processing and computer
networks security.

Dr Lalji Prasad, Department of Computer Engineering , SIRT, Sage University

Lalji Prasad is a Professor of Computer Science and Engineering at SAGE University, Indore. He
received his PhD in Computer Science and Engineering from the Rajiv Gandhi Proudyogiki
Vishwavidyalaya in Bhopal, India, and ME in Software Engineering from IET DAVV. He has
more than 20 years of academic and R&D experience. He is a reviewer in various reputed
journals. His research interests are in the areas of computer vision, deep learning and, software
engineering.

How to Cite
Nikita Singhal, & Lalji Prasad. (2023). A Comparative Analysis of Deep Learning based Vehicle Detection Approaches. International Journal of Next-Generation Computing, 14(2). https://doi.org/10.47164/ijngc.v14i2.976

References

  1. Azimi, S. M., Bahmanyar, R., Henry, C., and Kurz, F. 2021. EAGLE: Large-Scale Vehicle Detection Dataset in Real-World Scenarios using Aerial Imagery. In Proceeding of 25th International Conference on Pattern Recognition (ICPR). 6920–6927. DOI: https://doi.org/10.1109/ICPR48806.2021.9412353
  2. Bahnsen, C. H. and Moeslund, T. B. 2019. Rain removal in traffic surveillance: Does it matter? IEEE Transactions on Intelligent Transportation Systems Vol.20, No.8, 2802– 2819. DOI: https://doi.org/10.1109/TITS.2018.2872502
  3. Bochkovskiy, A., Wang, C., and Liao, H. M. 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. CoRR Vol.abs/2004.10934.
  4. Bozcan, I. and Kayacan, E. 2020. AU-AIR: A Multi-modal Unmanned Aerial Vehicle Dataset for Low Altitude Traffic Surveillance. In Proceeding of the IEEE International Conference on Robotics and Automation (ICRA). 8504–8510. DOI: https://doi.org/10.1109/ICRA40945.2020.9196845
  5. Caraffi, C., Voj´ıˇr, T., Trefn´y, J., ˇSochman, J., and Matas, J. 2012. A System for Realtime Detection and Tracking of Vehicles from a Single Car-mounted Camera. In Proceeding of 15th International IEEE Conference on Intelligent Transportation Systems. 975–982. DOI: https://doi.org/10.1109/ITSC.2012.6338748
  6. Chen, W., Qiao, Y., and Li, Y. 2020. Inception-SSD: An Improved Single Shot Detector for Vehicle Detection. Journal of Ambient Intelligence and Humanized Computing. DOI: https://doi.org/10.1007/s12652-020-02085-w
  7. Chen, Y. and Hu, W. 2021. A Video-Based Method with Strong-Robustness for Vehicle Detection and Classification Based On Static Appearance Features and Motion Features. IEEE Access Vol.9, 13083–13098. DOI: https://doi.org/10.1109/ACCESS.2021.3051659
  8. Collins, R. T., Zhou, X., and Teh, S. K. 2005. An Open Source Tracking Testbed and Evaluation Web Site.
  9. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and Schiele, B. 2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: https://doi.org/10.1109/CVPR.2016.350
  10. Deng, Z., Sun, H., Zhou, S., Zhao, J., and Zou, H. 2017. Toward Fast and Accurate Vehicle Detection in Aerial Images Using Coupled Region-Based Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Vol.10, No.8, 3652–3664. DOI: https://doi.org/10.1109/JSTARS.2017.2694890
  11. Dong, Z., Wu, Y., Pei, M., and Jia, Y. 2015. Vehicle Type Classification Using a Semisupervised Convolutional Neural Network. IEEE Transactions on Intelligent Transportation Systems Vol.16, No.4, 2247–2256. DOI: https://doi.org/10.1109/TITS.2015.2402438
  12. Du, D., Qi, Y., Yu, H., Yang, Y., Duan, K., Li, G., Zhang, W., Huang, Q., and Tian, Q. 2018. The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking. In Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Springer International Publishing, Cham, 375–391. DOI: https://doi.org/10.1007/978-3-030-01249-6_23
  13. Du, S., Zhang, P., Zhang, B., and Xu, H. 2021. Weak and Occluded Vehicle Detection in Complex Infrared Environment Based on Improved YOLOv4. IEEE Access Vol.9, 25671– 25680. DOI: https://doi.org/10.1109/ACCESS.2021.3057723
  14. Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. 2010. The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision Vol.88, No.2 (June), 303–338. DOI: https://doi.org/10.1007/s11263-009-0275-4
  15. Geiger, A., Lenz, P., and Urtasun, R. 2012. Are We Ready for Autonomous Driving? The KITTI vision Benchmark Suite. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 3354–3361. DOI: https://doi.org/10.1109/CVPR.2012.6248074
  16. Guerrero-G´omez-Olmedo, R., L´opez-Sastre, R. J., Maldonado-Basc´on, S., and Fern´andez-Caballero, A. 2013. Vehicle Tracking by Simultaneous Detection and Viewpoint Estimation. In Natural and Artificial Computation in Engineering and Medical Applications, J. M. Ferr´andez Vicente, J. R. ´Alvarez S´anchez, F. de la Paz L´opez, and F. J. Toledo Moreo, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 306–316. DOI: https://doi.org/10.1007/978-3-642-38622-0_32
  17. Guerrero-G´omez-Olmedo, R., Torre-Jim´enez, B., L´opez-Sastre, R., Maldonado- Basc´on, S., and noro Rubio, D. O. 2015. Extremely Overlapping Vehicle Counting. In Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA). DOI: https://doi.org/10.1007/978-3-319-19390-8_48
  18. Harikrishnan, P. M., Thomas, A., Gopi, V. P., Palanisamy, P., andWahid, K. A. 2021. Inception Single Shot Multi-box Detector with Affinity Propagation Clustering and their Application in Multi-class Vehicle Counting. Applied Intelligence Vol.51, No.7, 4714–4729. DOI: https://doi.org/10.1007/s10489-020-02127-y
  19. Hsieh, M.-R., Lin, Y.-L., and Hsu, W. H. 2017. Drone-based Object Counting by Spatially Regularized Regional Proposal Networks. In Proceeding of the IEEE International Conference on Computer Vision (ICCV). IEEE. DOI: https://doi.org/10.1109/ICCV.2017.446
  20. Hu, X., Xu, X., Xiao, Y., Chen, H., He, S., Qin, J., and Heng, P.-A. 2019. SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems Vol.20, No.3, 1010–1019. DOI: https://doi.org/10.1109/TITS.2018.2838132
  21. Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., and Yang, R. 2020. The ApolloScape Open Dataset for Autonomous Driving and Its Application. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.42, No.10, 2702–2719. DOI: https://doi.org/10.1109/TPAMI.2019.2926463
  22. Javadi, S., Dahl, M., and Pettersson, M. I. 2021. Vehicle Detection in Aerial Images Based on 3D Depth Maps and Deep Neural Networks. IEEE Access Vol.9, 8381–8391. DOI: https://doi.org/10.1109/ACCESS.2021.3049741
  23. Kenk, M. A. and Hassaballah, M. 2020. DAWN: Vehicle Detection in Adverse Weather Nature Dataset. ArXiv Vol.abs/2008.05402.
  24. Klein, L. A., Gibson, D. R. P., and Mills, M. K. 2006. Traffic Detector Handbook,. Federal Highway Administration, FHWA-HRT-06-108. 3rd edition.
  25. Koay, H. V., Chuah, J. H., Chow, C. O., Chang, Y. L., and Yong, K. K. 2021. YOLORTUAV: Towards Real-time Vehicle Detection through Aerial Images with Low-cost Edge Devices. Remote Sensing Vol.13, No.21. DOI: https://doi.org/10.3390/rs13214196
  26. Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 2013. 3D Object Representations for Fine-Grained Categorization. In Proceeding of 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13). Sydney, Australia. DOI: https://doi.org/10.1109/ICCVW.2013.77
  27. Lin, H.-Y., Tu, K.-C., and Li, C.-Y. 2020. VAID: An Aerial Image Dataset for Vehicle Detection and Classification. IEEE Access Vol.8, 212209–212219. DOI: https://doi.org/10.1109/ACCESS.2020.3040290
  28. Liu, K. and Mattyus, G. 2015. Fast Multiclass Vehicle Detection on Aerial Images. IEEE Geoscience and Remote Sensing Letters Vol.12, No.9, 1938–1942. DOI: https://doi.org/10.1109/LGRS.2015.2439517
  29. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. 2016. SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Springer International Publishing, Cham, 21–37. DOI: https://doi.org/10.1007/978-3-319-46448-0_2
  30. Luo, X., Tian, X., Zhang, H., Hou, W., Leng, G., Xu, W., Jia, H., He, X., Wang, M., and Zhang, J. 2020. Fast Automatic Vehicle Detection in UAV Images using Convolutional Neural Networks. Remote Sensing Vol.12, No.12. DOI: https://doi.org/10.3390/rs12121994
  31. Luo, Z., Branchaud-Charron, F., Lemaire, C., Konrad, J., Li, S., Mishra, A., Achkar, A., Eichel, J., and Jodoin, P.-M. 2018. MIO-TCD: A New Benchmark Dataset for Vehicle Classification and Localization. IEEE Transactions on Image Processing Vol.27, No.10, 5129–5141. DOI: https://doi.org/10.1109/TIP.2018.2848705
  32. Lyu, S., Chang, M.-C., Du, D., Wen, L., Qi, H., Li, Y., Wei, Y., Ke, L., Hu, T., Del Coco, M., Carcagn`ı, P., Anisimov, D., Bochinski, E., Galasso, F., Bunyak, F., Han, G., Ye, H., Wang, H., Palaniappan, K., Ozcan, K., Wang, L., Wang, L., Lauer, M., Watcharapinchai, N., Song, N., Al-Shakarji, N. M., Wang, S., Amin, S., Rujikietgumjorn, S., Khanova, T., Sikora, T., Kutschbach, T., Eiselein, V., Tian, W., Xue, X., Yu, X., Lu, Y., Zheng, Y., Huang, Y., and Zhang, Y. 2017. UADETRAC 2017: Report of AVSS2017 IWT4S Challenge on Advanced Traffic Monitoring. In Proceedings of 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). 1–7. DOI: https://doi.org/10.1109/AVSS.2017.8078560
  33. Mundhenk, T. N., Konjevod, G., Sakla, W. A., and Boakye, K. 2016. A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning. In Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Springer International Publishing, Cham, 785–800. DOI: https://doi.org/10.1007/978-3-319-46487-9_48
  34. Nasaruddin, N., Muchtar, K., and Afdhal, A. 2019. A Lightweight Moving Vehicle Classification System through Attention-Based Method and Deep Learning. IEEE Access Vol.7, 157564–157573. DOI: https://doi.org/10.1109/ACCESS.2019.2950162
  35. Neuhold, G., Ollmann, T., Bul`o, S. R., and Kontschieder, P. 2017. The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes. In Proceeding of the IEEE International Conference on Computer Vision (ICCV). 5000–5009. DOI: https://doi.org/10.1109/ICCV.2017.534
  36. Nguyen, H. 2019. Improving Faster R-CNN Framework for Fast Vehicle Detection. Mathematical Problems in Engineering Vol.2019. DOI: https://doi.org/10.1155/2019/3808064
  37. Ni, Z., Liu, T., Li, K., Bai, Y., and Zhu, Z. 2021. Real-time Vehicle Detection and Computer Intelligent Recognition through Improved YOLOv4. Journal of Physics: Conference Series Vol.2083, No.4. DOI: https://doi.org/10.1088/1742-6596/2083/4/042006
  38. Razakarivony, S. and Jurie, F. 2016. Vehicle Detection in Aerial Imagery : A Small Target Detection Benchmark. Journal of Visual Communication and Image Representation Vol.34, 187–203. DOI: https://doi.org/10.1016/j.jvcir.2015.11.002
  39. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. 2016. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 779–788. DOI: https://doi.org/10.1109/CVPR.2016.91
  40. Redmon, J. and Farhadi, A. 2017. YOLO9000: Better, Faster, Stronger. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6517–6525. DOI: https://doi.org/10.1109/CVPR.2017.690
  41. Redmon, J. and Farhadi, A. 2018. YOLOv3: An Incremental Improvement. CoRR Vol.abs/1804.02767.
  42. Ren, S., He, K., Girshick, R., and Sun, J. 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.39, No.6, 1137–1149. DOI: https://doi.org/10.1109/TPAMI.2016.2577031
  43. S. S. Jamiya and R. P. Esther. 2021. LittleYOLO-SPP: A Delicate Real-time Vehicle Detection Algorithm. Optik Vol.225. DOI: https://doi.org/10.1016/j.ijleo.2020.165818
  44. Saralajew, S., Ohnemus, L., Ewecker, L., Asan, E., Isele, S., and Roos, S. 2021. A Dataset for Provident Vehicle Detection at Night. In Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 9750–9757. DOI: https://doi.org/10.1109/IROS51168.2021.9636162
  45. Sheu, M. H., Morsalin, S. M., Zheng, J. X., Hsia, S. C., Lin, C. J., and Chang, C. Y. 2021. FGSC: Fuzzy Guided Scale Choice SSD Model for Edge AI Design on Real-time Vehicle Detection and Class Counting. Sensors Vol.21, No.21. DOI: https://doi.org/10.3390/s21217399
  46. Singhal, N. and Prasad, L. 2022. Sensor based Vehicle Detection and Classification - A Systematic Review. International Journal of Engineering Systems Modelling and Simulation Vol.13, No.1, 38–59. DOI: https://doi.org/10.1504/IJESMS.2022.122731
  47. Song, H., Liang, H., Li, H., Dai, Z., and Yun, X. 2019. Vision-based Vehicle Detection and Counting System using Deep Learning in Highway Scenes. European Transport Research Review Vol.11, No.1 (Dec). DOI: https://doi.org/10.1186/s12544-019-0390-4
  48. Sun, W., Dai, L., Zhang, X., Chang, P., and He, X. 2022. RSOD: Real-time Small Object Detection Algorithm in UAV-based Traffic Monitoring. Applied Intelligence Vol.52, No.8, 8448–8463. DOI: https://doi.org/10.1007/s10489-021-02893-3
  49. Tan, Q., Ling, J., Hu, J., Qin, X., and Hu, J. 2020. Vehicle Detection in High Resolution Satellite Remote Sensing Images Based on Deep Learning. IEEE Access Vol.8, 153394–153402. DOI: https://doi.org/10.1109/ACCESS.2020.3017894
  50. Tang, T., Zhou, S., Deng, Z., Lei, L., and Zou, H. 2017. Arbitrary-Oriented Vehicle Detection in Aerial Imagery with Single Convolutional Neural Networks. Remote Sensing Vol.9, No.11. DOI: https://doi.org/10.3390/rs9111170
  51. Tanner, F., Colder, B., Pullen, C., Heagy, D., Eppolito, M., Carlan, V., Oertel, C., and Sallee, P. 2009. Overhead Imagery Research Data Set — an Annotated Data Library & Tools to aid in the Development of Computer Vision Algorithms. In IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009). 1–8. DOI: https://doi.org/10.1109/AIPR.2009.5466304
  52. Tayara, H., Soo, K. G., and Chong, K. T. 2017. Vehicle Detection and Counting in High-Resolution Aerial Images Using Convolutional Regression Neural Network. IEEE Access Vol.6, 2220–2230. DOI: https://doi.org/10.1109/ACCESS.2017.2782260
  53. Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., and Ishwar, P. 2014. CDnet 2014: An Expanded Change Detection Benchmark Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. DOI: https://doi.org/10.1109/CVPRW.2014.126
  54. Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., and Zhang, L. 2018. DOTA: A Large-Scale Dataset for Object Detection in Aerial Images. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3974–3983. DOI: https://doi.org/10.1109/CVPR.2018.00418
  55. Yang, Z. and Pun-Cheng, L. S. C. 2018. Vehicle Detection in Intelligent Transportation Systems and its Applications under Varying Environments: A Review. Image and Vision Computing Vol. 69, 143–154. DOI: https://doi.org/10.1016/j.imavis.2017.09.008
  56. Yin, G., Yu, M., Wang, M., Hu, Y., and Zhang, Y. 2022. Research on Highway Vehicle Detection based on Faster R-CNN and Domain Adaptation. Applied Intelligence Vol.52, No.4, 3483–3498. DOI: https://doi.org/10.1007/s10489-021-02552-7
  57. Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., and Darrell, T. 2018. BDD100K: A Diverse Driving Video Database with Scalable Annotation Tooling. CoRR Vol.abs/1805.04687.
  58. Yu, G., Fan, H., Zhou, H., Wu, T., and Zhu, H. 2020. Vehicle Target Detection Method Based on Improved SSD Model. Journal on Artificial Intelligence Vol.2, No.3, 125–135. DOI: https://doi.org/10.32604/jai.2020.010501
  59. Zhang, X. and Zhu, X. 2019. An Efficient and Scene-Adaptive Algorithm for Vehicle Detection in Aerial Images using an Improved YOLOv3 Framework. ISPRS International Journal of Geo-Information Vol.8, No.11 (Oct), 483. DOI: https://doi.org/10.3390/ijgi8110483
  60. Zhao, M., Zhong, Y., Sun, D., and Chen, Y. 2021. Accurate and Efficient Vehicle Detection Framework based on SSD Algorithm. IET Image Processing Vol.15, No.13, 3094–3104. DOI: https://doi.org/10.1049/ipr2.12297
  61. Zhu, P. et al. 2019. VisDrone-DET2018: The Vision Meets Drone Object Detection in Image Challenge Results. In Computer Vision – ECCV 2018 Workshops. Springer International Publishing, Cham, 437–468.