Modern Thyroid Cancer Diagnosis: A Review of AI-Powered Algorithms for Detection and Classification

##plugins.themes.academic_pro.article.main##

Kuntala Boruah
Lachit Dutta
Manash Kapil Pathak

Abstract

Thyroid nodules are one of the most common abnormalities in the thyroid gland, which are often harmless in nature (benign), but in a few unfortunate instances, they may be fatal (malignant). This review explores recent advancements in artificial intelligence (AI) applied to thyroid cancer detection and classification, with a focus on machine learning, deep learning, and image processing techniques. We provide a comprehensive evaluation of AI applications across key imaging modalities—Ultrasonography (USG), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET/CT)—as well as cytopathological analysis using Fine Needle Aspiration Biopsy (FNAB). By critically examining studies on AI-driven preoperative assessments, we highlight improvements in diagnostic accuracy, sensitivity, specificity and efficiency. This review also identifies current limitations in AI applications, including technical challenges and unresolved issues that hinder widespread clinical adoption. Although significant progress has been achieved, the integration of AI in clinical settings remains limited, as AI-based outputs currently serve as supportive tools rather than definitive diagnostic evidence. We discuss the potential of AI to transform thyroid cancer diagnostics by enhancing reliability and accessibility, while addressing the need for further research to develop a unified, robust and clinically trustworthy AI framework for thyroid cancer diagnosis.

##plugins.themes.academic_pro.article.details##

How to Cite
Boruah, K., Dutta, L., & Pathak, M. K. (2024). Modern Thyroid Cancer Diagnosis: A Review of AI-Powered Algorithms for Detection and Classification. International Journal of Next-Generation Computing, 15(3). https://doi.org/10.47164/ijngc.v15i3.1768

References

  1. Acharya, U. R., Swapna, G., Sree, S. V., Molinari, F., Gupta, S., Bardales, R. H., Witkowska, A., and Suri, J. S. 2014. A Review on Ultrasound-Based Thyroid Cancer Tissue Characterization and Automated Classification. Technology in Cancer Research & Treatment 13, 4 (Aug.), 289–301. DOI: https://doi.org/10.7785/tcrt.2012.500381
  2. Ahmed, J. and Abdul, M. 2017. Intelligent Diagnostic System for Nuclei Structure Classification of Thyroid Cancerous and Non-Cancerous Tissues. International Journal of Advanced Computer Science and Applications 8, 7. DOI: https://doi.org/10.14569/IJACSA.2017.080746
  3. Alexander, E. K., Marqusee, E., Orcutt, J., Benson, C. B., Frates, M. C., Doubilet, P. M., Cibas, E. S., and Atri, A. 2004. Thyroid Nodule Shape and Prediction of Malignancy. Thyroid 14, 11 (Nov.), 953–958. DOI: https://doi.org/10.1089/thy.2004.14.953
  4. Baffa, M. D. F. O., Zezell, D. M., Bachmann, L., Pereira, T. M., Deserno, T. M., and Felipe, J. C. 2024. Deep neural networks can differentiate thyroid pathologies on infrared hyperspectral images. Computer Methods and Programs in Biomedicine 247, 108100. DOI: https://doi.org/10.1016/j.cmpb.2024.108100
  5. Bahramian, F. and Mojra, A. 2020. Thyroid cancer estimation using infrared thermography data. Infrared Physics & Technology 104, 103126. DOI: https://doi.org/10.1016/j.infrared.2019.103126
  6. Barczynski, M. ´ , Stopa-Barczynska, M. ´ , Wojtczak, B., Czarniecka, A., and Konturek, A. 2020. Clinical validation of S-DetectTM mode in semi-automated ultrasound classification of thyroid lesions in surgical office. Gland Surgery 9, S2 (Feb.), S77–S85. DOI: https://doi.org/10.21037/gs.2019.12.23
  7. Baruah, D. K. and Boruah, K. 2024. Early Detection Of Canine Babesia From Red Blood Cell Images Using Deep Ensemble Learning. j.electron.electromedical.eng.med.inform 6, 4 (Sept.), 509–523.
  8. Baxi, V., Lee, G., Duan, C., Pandya, D., Cohen, D. N., Edwards, R., Chang, H., Li, J., Elliott, H., Pokkalla, H., Glass, B., Agrawal, N., Lahiri, A., Wang, D., Khosla, A., Wapinski, I., Beck, A., and Montalto, M. 2022. Association of artificial intelligence-powered and manual quantification of programmed death-ligand 1 (PD-L1) expression with outcomes in patients treated with nivolumab ± ipilimumab. Modern Pathology 35, 11 (Nov.), 1529–1539. DOI: https://doi.org/10.1038/s41379-022-01119-2
  9. Binse, I., Poeppel, T. D., Ruhlmann, M., Gomez, B., Umutlu, L., Bockisch, A., and Rosenbaum-Krumme,
  10. S. J. 2016. Imaging with 124I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT? European Journal of Nuclear Medicine and Molecular Imaging 43, 6 (June), 1011–1017. DOI: https://doi.org/10.1007/s00259-015-3288-y
  11. Bonjoc, K.-J., Young, H., Warner, S., Gernon, T., Maghami, E., and Chaudhry, A. 2020. Thyroid cancer diagnosis in the era of precision imaging. Journal of Thoracic Disease 12, 9 (Sept.), 5128–5139. DOI: https://doi.org/10.21037/jtd.2019.08.37
  12. Boruah, K. and Pathak, M. K. 2021. Application of IoT in Different Aspects of Child Care: Literature Review and Classification. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING 12, 3 (Aug.). DOI: https://doi.org/10.47164/ijngc.v12i3.693
  13. Brown, A. M., Nagala, S., McLean, M. A., Lu, Y., Scoffings, D., Apte, A., Gonen, M., Stambuk, H. E., Shaha, A. R., Tuttle, R. M., Deasy, J. O., Priest, A. N., Jani, P., Shukla-Dave, A., and Griffiths, J. 2016. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on diffusion-weighted MRI. Magnetic Resonance in Medicine 75, 4 (Apr.), 1708–1716. DOI: https://doi.org/10.1002/mrm.25743
  14. Buda, M., Wildman-Tobriner, B., Hoang, J. K., Thayer, D., Tessler, F. N., Middleton, W. D., and Mazurowski, M. A. 2019. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology 292, 3 (Sept.), 695–701. DOI: https://doi.org/10.1148/radiol.2019181343
  15. Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor, A., Werneck Krauss Silva, V., Busam, K. J., Brogi, E., Reuter, V. E., Klimstra, D. S., and Fuchs, T. J. 2019. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nature Medicine 25, 8 (Aug.), 1301–1309. DOI: https://doi.org/10.1038/s41591-019-0508-1
  16. Chain, K., Legesse, T., Heath, J. E., and Staats, P. N. 2019. Digital image-assisted quantitative nuclear analysis improves diagnostic accuracy of thyroid fine-needle aspiration cytology. Cancer Cytopathology 127, 8 (Aug.), 501–513. DOI: https://doi.org/10.1002/cncy.22120
  17. Chen, C. H., Lu, F., Yang, W. J., Yang, P. E., Chen, W. M., Kang, S. T., Huang, Y. S., Kao, Y. C., Feng, C. T., Chang, P. C., Wang, T., Hsieh, C. A., Lin, Y. C., Jen Huang, J. Y., and Wang, L. H.-C. 2021. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure. Fertility and Sterility 116, 1 (July), 181–188. DOI: https://doi.org/10.1016/j.fertnstert.2021.01.055
  18. Chen, P.-T., Wu, T., Wang, P., Chang, D., Liu, K.-L., Wu, M.-S., Roth, H. R., Lee, P.-C., Liao, W.-C., and Wang, W. 2023. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Populationbased Study. Radiology 306, 1 (Jan.), 172–182. DOI: https://doi.org/10.1148/radiol.220152
  19. Chi, J., Walia, E., Babyn, P., Wang, J., Groot, G., and Eramian, M. 2017. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. Journal of Digital Imaging 30, 4 (Aug.), 477–486. DOI: https://doi.org/10.1007/s10278-017-9997-y
  20. Cibas, E. S. and Ali, S. Z. 2009a. The Bethesda System for Reporting Thyroid Cytopathology. American Journal of Clinical Pathology 132, 5 (Nov.), 658–665. DOI: https://doi.org/10.1309/AJCPPHLWMI3JV4LA
  21. Cibas, E. S. and Ali, S. Z. 2009b. The Bethesda System for Reporting Thyroid Cytopathology. Thyroid 19, 11 (Nov.), 1159–1165. DOI: https://doi.org/10.1089/thy.2009.0274
  22. Cochand-Priollet, B., Koutroumbas, K., Megalopoulou, T., Pouliakis, A., Sivolapenko, G., and Karakitsos, P. 2006. Discriminating benign from malignant thyroid lesions using artificial intelligence and statistical selection of morphometric features. Oncology Reports. DOI: https://doi.org/10.3892/or.15.4.1023
  23. Costa, C., Pastorello, R. G., Mendonc¸a, A., Tamaro, C., Morais, C., Barbosa, B., Ribeiro, K. B., Caivano, A., and Saieg, M. A. 2018. Use of a low-cost telecytopathology method for remote assessment of thyroid FNAs: Low-Cost Telecytopathology for Thyroid. Cancer Cytopathology 126, 9 (Sept.), 767–772. DOI: https://doi.org/10.1002/cncy.22026
  24. Das, D., Iyengar, M. S., Majdi, M. S., Rodriguez, J. J., and Alsayed, M. 2024. Deep learning for thyroid nodule examination: a technical review. Artificial Intelligence Review 57, 3 (Feb.), 47. DOI: https://doi.org/10.1007/s10462-023-10635-9
  25. Deng, Y., Soule, E., Cui, E., Samuel, A., Shah, S., Lall, C., Sundaram, C., and Sandrasegaran, K. 2020. Usefulness of CT texture analysis in differentiating benign and malignant renal tumours. Clinical Radiology 75, 2 (Feb.), 108–115. DOI: https://doi.org/10.1016/j.crad.2019.09.131
  26. Dindane, Z., Sveric, K., Winkler, A., Botan, R., Mierke, J., Svitil, J., Heidrich, F. M., Ulbrich, S., and Linke, A. 2022. The automatic identification of left ventricular chambers and quantification of ejection fraction using a novel artificial intelligence-based system – a validation against cardiac magnetic resonance. European Heart Journal 43, Supplement 2 (Oct.), ehac544.325. DOI: https://doi.org/10.1093/eurheartj/ehac544.325
  27. Ding, J., Huang, Z., Shi, M., and Ning, C. 2019. Automatic Thyroid Ultrasound Image Segmentation Based on U-shaped Network. In 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, Suzhou, China, 1–5. DOI: https://doi.org/10.1109/CISP-BMEI48845.2019.8966062
  28. Dov, D., Kovalsky, S., Cohen, J., Range, D., Henao, R., and Carin, L. 2019. Thyroid Cancer Malignancy Prediction From Whole Slide Cytopathology Images. Publisher: arXiv Version Number: 1.
  29. Dov, D., Kovalsky, S. Z., Assaad, S., Cohen, A. A. P. J., Range, D. E., Henao, R., and Carin, L. 2019. Weakly Supervised Instance Learning for Thyroid Malignancy Prediction from Whole Slide Cytopathology Images. Publisher: arXiv Version Number: 2.
  30. Dov, D., Kovalsky, S. Z., Feng, Q., Assaad, S., Cohen, J., Bell, J., Henao, R., Carin, L., and Range, D. E. 2022. Use of Machine Learning–Based Software for the Screening of Thyroid Cytopathology Whole Slide Images. Archives of Pathology & Laboratory Medicine 146, 7 (July), 872–878. DOI: https://doi.org/10.5858/arpa.2020-0712-OA
  31. Duan, W., Gao, L., Liu, J., Li, C., Jiang, P., Wang, L., Chen, H., Sun, X., Cao, D., Pang, B., Li, R., and Liu, S. 2022. Computer-Assisted Fine-Needle Aspiration Cytology of Thyroid Using Two-Stage Refined Convolutional Neural Network. Electronics 11, 24 (Dec.), 4089. DOI: https://doi.org/10.3390/electronics11244089
  32. El Adawy, M., Shehab, Z., Keshk, H., and El Shourbagy, M. 2006. A Fast Algorithm for Segmentation of Microscopic Cell Images. In 2006 ITI 4th International Conference on Information & Communications Technology. IEEE, Cairo, Egypt, 1–1. DOI: https://doi.org/10.1109/ITICT.2006.358282
  33. Elliott Range, D. D., Dov, D., Kovalsky, S. Z., Henao, R., Carin, L., and Cohen, J. 2020. Application of a machine learning algorithm to predict malignancy in thyroid cytopathology. Cancer Cytopathology 128, 4 (Apr.), 287–295. DOI: https://doi.org/10.1002/cncy.22238
  34. Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A., and Fares, Y. 2020. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduction and Targeted Therapy 5, 1 (Mar.), 28. DOI: https://doi.org/10.1038/s41392-020-0134-x
  35. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D., Pineros, M. ˜ , Znaor, A., and Bray,
  36. F. 2019. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer 144, 8 (Apr.), 1941–1953. DOI: https://doi.org/10.1002/ijc.31937
  37. Gao, X., Ran, X., and Ding, W. 2023. The progress of radiomics in thyroid nodules. Frontiers in Oncology 13, 1109319. DOI: https://doi.org/10.3389/fonc.2023.1109319
  38. Gonzalez, J. R., Conci, A., Moran, M. B. H., Araujo, A. S., Paes, A., Damiao, C., and Fiirst, W. G. 2019. Analysis of Static and Dynamic Infrared Images for Thyroid Nodules Investigation. In 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). IEEE, Abu Dhabi, United Arab Emirates, 1–7. DOI: https://doi.org/10.1109/AICCSA47632.2019.9035300
  39. Gopinath, B. and Gupta, B. R. 2010. Classification of Thyroid Carcinoma in FNAB Cytological Microscopic Images:. International Journal of Healthcare Information Systems and Informatics 5, 2 (Apr.), 60–72. DOI: https://doi.org/10.4018/jhisi.2010040107
  40. Gopinath, B. and Shanthi, N. 2013. Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images. Australasian Physical & Engineering Sciences in Medicine 36, 2 (June), 219–230. DOI: https://doi.org/10.1007/s13246-013-0199-8
  41. Griffin, A. C., Schwartz, L. E., and Baloch, Z. W. 2011. Utility of on-site evaluation of endobronchial ultrasound-guided transbronchial needle aspiration specimens. CytoJournal 8, 20. DOI: https://doi.org/10.4103/1742-6413.90081
  42. Grullon, S., Spurrier, V., Zhao, J., Chivers, C., Jiang, Y., Motaparthi, K., Bonham, M., and Ianni, J. 2022. Using Whole Slide Image Representations from Self-Supervised Contrastive Learning for Melanoma Concordance Regression. Version Number: 1. DOI: https://doi.org/10.1007/978-3-031-25082-8_29
  43. Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D., and Kurtcuoglu, V. 2009. Three-Dimensional Computational Modeling of Subject-Specific Cerebrospinal Fluid Flow in the Subarachnoid Space. Journal of Biomechanical Engineering 131, 2 (Feb.), 021010. DOI: https://doi.org/10.1115/1.3005171
  44. Han, M. A. and Kim, J. H. 2018. Diagnostic X-Ray Exposure and Thyroid Cancer Risk: Systematic Review and Meta-Analysis. Thyroid 28, 2 (Feb.), 220–228. DOI: https://doi.org/10.1089/thy.2017.0159
  45. Hao, Y., Pan, C., Chen, W., Li, T., Zhu, W., and Qi, J. 2016. Differentiation between malignant and benign thyroid nodules and stratification of papillary thyroid cancer with aggressive histological features: Wholelesion diffusion-weighted imaging histogram analysis: Histogram ADC Analysis in Thyroid Nodules. Journal of Magnetic Resonance Imaging 44, 6 (Dec.), 1546–1555. DOI: https://doi.org/10.1002/jmri.25290
  46. Hasan, M. K., Kadkhodayan, K., Idrisov, E., Ali, S., Rafiq, E., Ben-Ami Shor, D., Abdel-Jalil, A., Navaneethan, U., Bang, J., Varadarajulu, S., Hawes, R., and Pernicone, P. 2019. Endoscopic ultrasoundguided liver biopsy using a 22-G fine needle biopsy needle: a prospective study. Endoscopy 51, 09 (Sept.), 818–824. DOI: https://doi.org/10.1055/a-0967-3640
  47. Hrebien, M. ´ , Stec, P. ´ , Nieczkowski, T., and Obuchowicz, A. 2008. Segmentation of Breast Cancer Fine Needle Biopsy Cytological Images. International Journal of Applied Mathematics and Computer Science 18, 2 (June), 159–170. DOI: https://doi.org/10.2478/v10006-008-0015-x
  48. Hsia, B. C., Subramaniam, V., Singh, S., Lai, A., Samtani, R., Bienstock, S., Liao, S., Stern, E., LaRocca,
  49. G., Sanz, J., Lerakis, S., Croft, L., Stone, G., and Goldman, M. E. 2022. Abstract 10891: Artificial Intelligence Echocardiographic Detection of Right Ventricular Dysfunction in Patients With High-Risk Pulmonary Embolism. Circulation 146, Suppl 1 (Nov.). DOI: https://doi.org/10.1161/circ.146.suppl_1.10891
  50. Hsieh, J. C.-H., Liao, C.-T., Wang, H.-M., Lien, M.-Y., Lin, Y.-C., Shen, S.-C., Kang, S.-T., Chen, W.-M., Hsieh, Y.-S., Fan, Y.-C., and Yang, E. P. E. 2020. Evaluation of circulating miRNAs for earlier cancer detection through machine-learning expression profiling. Journal of Clinical Oncology 38, 15 suppl (May), 1559–1559. DOI: https://doi.org/10.1200/JCO.2020.38.15_suppl.1559
  51. Ianni, J. D., Soans, R. E., Sankarapandian, S., Chamarthi, R. V., Ayyagari, D., Olsen, T. G., Bonham, M. J., Stavish, C. C., Motaparthi, K., Cockerell, C. J., Feeser, T. A., and Lee, J. B. 2020. Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload. Scientific Reports 10, 1 (Feb.), 3217. DOI: https://doi.org/10.1038/s41598-020-59985-2
  52. Jiang, Z.-P., Liu, Y.-Y., Shao, Z.-E., and Huang, K.-W. 2021. An Improved VGG16 Model for Pneumonia Image Classification. Applied Sciences 11, 23 (Nov.), 11185. DOI: https://doi.org/10.3390/app112311185
  53. Kaur, T. and Gandhi, T. K. 2019. Automated Brain Image Classification Based on VGG-16 and Transfer Learning. In 2019 International Conference on Information Technology (ICIT). IEEE, Bhubaneswar, India, 94–98. DOI: https://doi.org/10.1109/ICIT48102.2019.00023
  54. Kezlarian, B. and Lin, O. 2021. Artificial Intelligence in Thyroid Fine Needle Aspiration Biopsies. Acta Cytologica 65, 4, 324–329. DOI: https://doi.org/10.1159/000512097
  55. Ko, S. Y., Lee, J. H., Yoon, J. H., Na, H., Hong, E., Han, K., Jung, I., Kim, E., Moon, H. J., Park, V. Y., Lee, E., and Kwak, J. Y. 2019. Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound. Head & Neck 41, 4 (Apr.), 885–891. DOI: https://doi.org/10.1002/hed.25415
  56. Kylili, A., Fokaides, P. A., Christou, P., and Kalogirou, S. A. 2014. Infrared thermography (IRT) applications for building diagnostics: A review. Applied Energy 134, 531–549. DOI: https://doi.org/10.1016/j.apenergy.2014.08.005
  57. Landau, M. S. and Pantanowitz, L. 2019. Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape. Journal of the American Society of Cytopathology 8, 4 (July), 230–241. DOI: https://doi.org/10.1016/j.jasc.2019.03.003
  58. Lee, J. H., Ha, E. J., and Kim, J. H. 2019. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT. European Radiology 29, 10 (Oct.), 5452–5457. DOI: https://doi.org/10.1007/s00330-019-06098-8
  59. Lee, Y., Alam, M. R., Park, H., Yim, K., Seo, K. J., Hwang, G., Kim, D., Chung, Y., Gong, G., Cho, N. H., Yoo, C. W., Chong, Y., and Choi, H. J. 2024. Improved Diagnostic Accuracy of Thyroid Fine-Needle Aspiration Cytology with Artificial Intelligence Technology. Thyroid® 34, 6 (June), 723–734. DOI: https://doi.org/10.1089/thy.2023.0384
  60. Li, H., Weng, J., Shi, Y., Gu, W., Mao, Y., Wang, Y., Liu, W., and Zhang, J. 2018. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Scientific Reports 8, 1 (Apr.), 6600. DOI: https://doi.org/10.1038/s41598-018-25005-7
  61. Li, L.-R., Du, B., Liu, H.-Q., and Chen, C. 2021. Artificial Intelligence for Personalized Medicine in Thyroid Cancer: Current Status and Future Perspectives. Frontiers in Oncology 10, 604051. DOI: https://doi.org/10.3389/fonc.2020.604051
  62. Li, S., Wei, X., Wang, L., Zhang, G., Jiang, L., Zhou, X., and Huang, Q. 2024. Dual-source dual-energy CT and deep learning for equivocal lymph nodes on CT images for thyroid cancer. European Radiology. DOI: https://doi.org/10.1007/s00330-024-10854-w
  63. Li, W., Cheng, S., Qian, K., Yue, K., and Liu, H. 2021. Automatic Recognition and Classification System of Thyroid Nodules in CT Images Based on CNN. Computational Intelligence and Neuroscience 2021, 1–11. DOI: https://doi.org/10.1155/2021/5540186
  64. Lin, Y.-J., Chao, T.-K., Khalil, M.-A., Lee, Y.-C., Hong, D.-Z., Wu, J.-J., and Wang, C.-W. 2021. Deep Learning Fast Screening Approach on Cytological Whole Slides for Thyroid Cancer Diagnosis. Cancers 13, 15 (Aug.), 3891. DOI: https://doi.org/10.3390/cancers13153891
  65. Loomba, R., Noureddin, M., Kowdley, K. V., Kohli, A., Sheikh, A., Neff, G., Bhandari, B. R., Gunn, N., Caldwell, S. H., Goodman, Z., Wapinski, I., Resnick, M., Beck, A. H., Ding, D., Jia, C., Chuang, J., Huss, R. S., Chung, C., Subramanian, G. M., Myers, R. P., Patel, K., Borg, B. B., Ghalib, R., Kabler, H., Poulos, J., Younes, Z., Elkhashab, M., Hassanein, T., Iyer, R., Ruane, P., Shiffman, M. L., Strasser, S., Wong, V. W., Alkhouri, N., and for the ATLAS Investigators. 2021. Combination Therapies Including Cilofexor and Firsocostat for Bridging Fibrosis and Cirrhosis Attributable to NASH. Hepatology 73, 2 (Feb.), 625–643. DOI: https://doi.org/10.1002/hep.31622
  66. Lu, Y., Yang, Y., and Chen, W. 2020. Application of Deep Learning in the Prediction of Benign and Malignant Thyroid Nodules on Ultrasound Images. IEEE Access 8, 221468–221480. DOI: https://doi.org/10.1109/ACCESS.2020.3021115
  67. Ludwig, M., Ludwig, B., Miku la, A., Biernat, S., Rudnicki, J., and Kaliszewski, K. 2023. The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update. Cancers 15, 3 (Jan.), 708. DOI: https://doi.org/10.3390/cancers15030708
  68. Magalhaes, C., Vardasca, R., and Mendes, J. 2018. Recent use of medical infrared thermography in skin neoplasms. Skin Research and Technology 24, 4 (Nov.), 587–591. DOI: https://doi.org/10.1111/srt.12469
  69. Magreni, A., Bann, D. V., Schubart, J. R., and Goldenberg, D. 2015. The Effects of Race and Ethnicity on Thyroid Cancer Incidence. JAMA Otolaryngology–Head & Neck Surgery 141, 4 (Apr.), 319. DOI: https://doi.org/10.1001/jamaoto.2014.3740
  70. Maroulis, D. E., Savelonas, M. A., Iakovidis, D. K., Karkanis, S. A., and Dimitropoulos, N. 2007. Variable Background Active Contour Model for Computer-Aided Delineation of Nodules in Thyroid Ultrasound Images. IEEE Transactions on Information Technology in Biomedicine 11, 5 (Sept.), 537–543. DOI: https://doi.org/10.1109/TITB.2006.890018
  71. Mascarenhas, S. and Agarwal, M. 2021. A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. In 2021 International Conference on Disruptive Technologies for MultiDisciplinary Research and Applications (CENTCON). IEEE, Bengaluru, India, 96–99. DOI: https://doi.org/10.1109/CENTCON52345.2021.9687944
  72. Melany, M. and Chen, S. 2017. Thyroid Cancer. Endocrinology and Metabolism Clinics of North America 46, 3 (Sept.), 691–711. DOI: https://doi.org/10.1016/j.ecl.2017.04.011
  73. Mitra, S., Das, N., Dey, S., Chakrabarty, S., Nasipuri, M., and Naskar, M. K. 2020. Cytology Image Analysis Techniques Towards Automation: Systematically Revisited. Publisher: arXiv Version Number: 1. DOI: https://doi.org/10.1145/3447238
  74. Moran, M. B. H., Conci, A., Gonzalez, J. R., Araujo, A. S., Fiirst, W. G., Damiao, C. P., Lima, G. A. B., and Filho, R. A. D. C. 2018. Identification of thyroid nodules in infrared images by convolutional neural networks. In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, Rio de Janeiro, 1–7. DOI: https://doi.org/10.1109/IJCNN.2018.8489032
  75. Nachiappan, A. C., Metwalli, Z. A., Hailey, B. S., Patel, R. A., Ostrowski, M. L., and Wynne, D. M. 2014. The Thyroid: Review of Imaging Features and Biopsy Techniques with Radiologic-Pathologic Correlation. RadioGraphics 34, 2 (Mar.), 276–293. DOI: https://doi.org/10.1148/rg.342135067
  76. Nadda, R., Sahani, A. K., and Repaka, R. 2022. A Systematic Review of Real-time Fine-needle Aspiration Biopsy Methods for Soft Tissues. IETE Technical Review 39, 5 (Sept.), 1011–1026. DOI: https://doi.org/10.1080/02564602.2021.1955758
  77. Naglah, A., Khalifa, F., Khaled, R., Abdel Razek, A. A. K., Ghazal, M., Giridharan, G., and El-Baz, A. 2021. Novel MRI-Based CAD System for Early Detection of Thyroid Cancer Using Multi-Input CNN. Sensors 21, 11 (June), 3878. DOI: https://doi.org/10.3390/s21113878
  78. Naglah, A., Khalifa, F., Khaled, R., Razek, A. A. K. A., and El-Baz, A. 2021. Thyroid Cancer ComputerAided Diagnosis System using MRI-Based Multi-Input CNN Model. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, Nice, France, 1691–1694. DOI: https://doi.org/10.1109/ISBI48211.2021.9433841
  79. Nguyen, D. T., Kang, J. K., Pham, T. D., Batchuluun, G., and Park, K. R. 2020. Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence. Sensors 20, 7 (Mar.), 1822. DOI: https://doi.org/10.3390/s20071822
  80. Olsen, T. G., Jackson, B. H., Feeser, T. A., Kent, M. N., Moad, J. C., Krishnamurthy, S., Lunsford, D. D., and Soans, R. E. 2018. Diagnostic Performance of Deep Learning Algorithms Applied to Three Common Diagnoses in Dermatopathology. Journal of Pathology Informatics 9, 1 (Jan.), 32. DOI: https://doi.org/10.4103/jpi.jpi_31_18
  81. Pantanowitz, L., Quiroga-Garza, G. M., Bien, L., Heled, R., Laifenfeld, D., Linhart, C., Sandbank, J., Albrecht Shach, A., Shalev, V., Vecsler, M., Michelow, P., Hazelhurst, S., and Dhir, R. 2020. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. The Lancet Digital Health 2, 8 (Aug.), e407–e416. DOI: https://doi.org/10.1016/S2589-7500(20)30159-X
  82. Pathak, R. K., Mishra, S., Sharan, P., and Roy, S. K. 2022. Nodule Detection in Infrared Thermography Using Deep Learning. In 2022 IEEE 7th International conference for Convergence in Technology (I2CT). IEEE, Mumbai, India, 1–6. DOI: https://doi.org/10.1109/I2CT54291.2022.9824313
  83. Peng, W., Liu, C., Xia, S., Shao, D., Chen, Y., Liu, R., and Zhang, Z. 2017. Thyroid nodule recognition in computed tomography using first order statistics. BioMedical Engineering OnLine 16, 1 (Dec.), 67. DOI: https://doi.org/10.1186/s12938-017-0367-2
  84. Poudel, P., Illanes, A., Sadeghi, M., and Friebe, M. 2019. Patch Based Texture Classification of Thyroid Ultrasound Images using Convolutional Neural Network. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Berlin, Germany, 5828–5831. DOI: https://doi.org/10.1109/EMBC.2019.8857929
  85. Poudel, P., Illanes, A., Sheet, D., and Friebe, M. 2018. Evaluation of Commonly Used Algorithms for Thyroid Ultrasound Images Segmentation and Improvement Using Machine Learning Approaches. Journal of Healthcare Engineering 2018, 1–13. DOI: https://doi.org/10.1155/2018/8087624
  86. Pouliakis, A., Karakitsou, E., Margari, N., Bountris, P., Haritou, M., panayiotides, J., Koutsouris, D., and Karakitsos, P. 2016. Artificial Neural Networks as Decision Support Tools in Cytopathology: Past, Present, and Future. Biomedical Engineering and Computational Biology 7, BECB.S31601. DOI: https://doi.org/10.4137/BECB.S31601
  87. Raciti, P., Sue, J., Ceballos, R., Godrich, R., Kunz, J. D., Kapur, S., Reuter, V., Grady, L., Kanan, C., Klimstra, D. S., and Fuchs, T. J. 2020. Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Modern Pathology 33, 10 (Oct.), 2058–2066. DOI: https://doi.org/10.1038/s41379-020-0551-y
  88. Raciti, P., Sue, J., Retamero, J. A., Ceballos, R., Godrich, R., Kunz, J. D., Casson, A., Thiagarajan, D., Ebrahimzadeh, Z., Viret, J., Lee, D., Schuffler, P. J. ¨ , DeMuth, G., Gulturk, E., Kanan, C., Rothrock, B., Reis-Filho, J., Klimstra, D. S., Reuter, V., and Fuchs, T. J. 2023. Clinical Validation of Artificial Intelligence–Augmented Pathology Diagnosis Demonstrates Significant Gains in Diagnostic Accuracy in Prostate Cancer Detection. Archives of Pathology & Laboratory Medicine 147, 10 (Oct.), 1178–1185. DOI: https://doi.org/10.5858/arpa.2022-0066-OA
  89. Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., and Matrisian, L. M. 2014. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Research 74, 11 (June), 2913–2921. DOI: https://doi.org/10.1158/0008-5472.CAN-14-0155
  90. Reverter, J. L., Ferrer-Estopinan, L. ˜ , Vazquez, F. ´ , Ballesta, S., Batule, S., Perez-Montes de Oca, A., Puig-Jove, C. ´ , and Puig-Domingo, M. 2022. Reliability of a computer-aided system in the evaluation of indeterminate ultrasound images of thyroid nodules. European Thyroid Journal 11, 1 (Feb.). DOI: https://doi.org/10.1530/ETJ-21-0023
  91. Sandbank, J., Bataillon, G., Nudelman, A., Krasnitsky, I., Mikulinsky, R., Bien, L., Thibault, L., Albrecht Shach, A., Sebag, G., Clark, D. P., Laifenfeld, D., Schnitt, S. J., Linhart, C., Vecsler, M., and Vincent-Salomon, A. 2022. Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies. npj Breast Cancer 8, 1 (Dec.), 129. DOI: https://doi.org/10.1038/s41523-022-00496-w
  92. Sankarapandian, S., Kohn, S., Spurrier, V., Grullon, S., Soans, R. E., Ayyagari, K. D., Chamarthi, R. V., Motaparthi, K., Lee, J. B., Shon, W., Bonham, M., and Ianni, J. D. 2021. A Pathology Deep Learning System Capable of Triage of Melanoma Specimens Utilizing Dermatopathologist Consensus as Ground Truth. Version Number: 1. DOI: https://doi.org/10.1109/ICCVW54120.2021.00076
  93. Sanyal, P., Mukherjee, T., Barui, S., Das, A., and Gangopadhyay, P. 2018. Artificial Intelligence in Cytopathology: A Neural Network to Identify Papillary Carcinoma on Thyroid Fine-Needle Aspiration Cytology Smears. Journal of Pathology Informatics 9, 1 (Jan.), 43. DOI: https://doi.org/10.4103/jpi.jpi_43_18
  94. Schmolze, D. B. and Fischer, A. H. 2019. An Automatable Method for Determining Adequacy of Thyroid Fine-Needle Aspiration Samples. Archives of Pathology & Laboratory Medicine 143, 9 (Sept.), 1084–1088. DOI: https://doi.org/10.5858/arpa.2018-0072-OA
  95. Schob, S., Meyer, H., Dieckow, J., Pervinder, B., Pazaitis, N., Hohn, A. , Garnov, N., Horvath-Rizea, D., Hoffmann, K.-T., and Surov, A. 2017. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer. International Journal of Molecular Sciences 18, 4 (Apr.), 821. DOI: https://doi.org/10.3390/ijms18040821
  96. Seo, H., Choi, J., Oh, C., Han, Y., and Park, H. 2014. Isotropic diffusion weighting for measurement of a high-resolution apparent diffusion coefficient map using a single radial scan in MRI. Physics in Medicine and Biology 59, 20 (Oct.), 6289–6303. DOI: https://doi.org/10.1088/0031-9155/59/20/6289
  97. Sharifi, Y., Bakhshali, M. A., Dehghani, T., DanaiAshgzari, M., Sargolzaei, M., and Eslami, S. 2021. Deep learning on ultrasound images of thyroid nodules. Biocybernetics and Biomedical Engineering 41, 2 (Apr.), 636–655. DOI: https://doi.org/10.1016/j.bbe.2021.02.008
  98. Shih, S.-R., Jan, I.-S., Chen, K.-Y., Chuang, W.-Y., Wang, C.-Y., Hsiao, Y.-L., Chang, T.-C., and Chen, A. 2019. Computerized Cytological Features for Papillary Thyroid Cancer Diagnosis—Preliminary Report. Cancers 11, 11 (Oct.), 1645. DOI: https://doi.org/10.3390/cancers11111645
  99. Sipos, J. A. 2009. Advances in Ultrasound for the Diagnosis and Management of Thyroid Cancer. Thyroid 19, 12 (Dec.), 1363–1372. DOI: https://doi.org/10.1089/thy.2009.1608
  100. Song, W., Li, S., Liu, J., Qin, H., Zhang, B., Zhang, S., and Hao, A. 2019. Multitask Cascade Convolution Neural Networks for Automatic Thyroid Nodule Detection and Recognition. IEEE Journal of Biomedical and Health Informatics 23, 3 (May), 1215–1224. DOI: https://doi.org/10.1109/JBHI.2018.2852718
  101. Song, X., Liu, Z., Li, L., Gao, Z., Fan, X., Zhai, G., and Zhou, H. 2021. Artificial intelligence CT screening model for thyroid-associated ophthalmopathy and tests under clinical conditions. International Journal of Computer Assisted Radiology and Surgery 16, 2 (Feb.), 323–330. DOI: https://doi.org/10.1007/s11548-020-02281-1
  102. Su, Y.-J. 2020. Early diagnosis of psoriatic arthritis among psoriasis patients: clinical experience sharing. Clinical Rheumatology 39, 12 (Dec.), 3677–3684. DOI: https://doi.org/10.1007/s10067-020-05132-1
  103. Suresh, S., Salama, G. R., Ramjit, A., Mahfoud, Z., Lee, K. S., and Pua, B. B. 2018. CT-Guided FineNeedle Aspiration Biopsy of Pulmonary Nodules 8 mm or Less Has a Higher Diagnostic Accuracy than Positron Emission Tomography–CT. Journal of Vascular and Interventional Radiology 29, 4 (Apr.), 520–523. DOI: https://doi.org/10.1016/j.jvir.2017.10.004
  104. Surov, A. and Garnov, N. 2017. Proving of a Mathematical Model of Cell Calculation Based on Apparent Diffusion Coefficient. Translational Oncology 10, 5 (Oct.), 828–830. DOI: https://doi.org/10.1016/j.tranon.2017.08.001
  105. Sveric, K. M., Botan, R., Dindane, Z., Winkler, A., Nowack, T., Heitmann, C., Schleußner, L., and Linke, A. 2023. Single-Site Experience with an Automated Artificial Intelligence Application for Left Ventricular Ejection Fraction Measurement in Echocardiography. Diagnostics 13, 7 (Mar.), 1298. DOI: https://doi.org/10.3390/diagnostics13071298
  106. Tang, X., Ding, H., Yuan, Y.-e., and Wang, Q. 2008. Morphological measurement of localized temperature increase amplitudes in breast infrared thermograms and its clinical application. Biomedical Signal Processing and Control 3, 4 (Oct.), 312–318. DOI: https://doi.org/10.1016/j.bspc.2008.04.001
  107. Toro-Tobon, D., Loor-Torres, R., Duran, M., Fan, J. W., Singh Ospina, N., Wu, Y., and Brito, J. P. 2023. Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions. Thyroid® 33, 8 (Aug.), 903–917. DOI: https://doi.org/10.1089/thy.2023.0132
  108. Ursuleanu, T. F., Luca, A. R., Gheorghe, L., Grigorovici, R., Iancu, S., Hlusneac, M., Preda, C., and Grigorovici, A. 2021. The Use of Artificial Intelligence on Segmental Volumes, Constructed from MRI and CT Images, in the Diagnosis and Staging of Cervical Cancers and Thyroid Cancers: A Study Protocol for a Randomized Controlled Trial. Journal of Biomedical Science and Engineering 14, 06, 300–304. DOI: https://doi.org/10.4236/jbise.2021.146025
  109. Vahdati, S., Khosravi, B., Robinson, K. A., Rouzrokh, P., Moassefi, M., Akkus, Z., and Erickson, B. J. 2024. A Multi-View Deep Learning Model for Thyroid Nodules Detection and Characterization in Ultrasound Imaging. Bioengineering 11, 7 (June), 648. DOI: https://doi.org/10.3390/bioengineering11070648
  110. Vargas-Salas, S., Mart´ınez, J. R., Urra, S., Dom´ınguez, J. M., Mena, N., Uslar, T., Lagos, M., Henr´ıquez, M., and Gonzalez, H. E. ´ 2018. Genetic testing for indeterminate thyroid cytology: review and meta-analysis. Endocrine-Related Cancer 25, 3 (Mar.), R163–R177. DOI: https://doi.org/10.1530/ERC-17-0405
  111. Wang, H., Song, B., Ye, N., Ren, J., Sun, X., Dai, Z., Zhang, Y., and Chen, B. T. 2020. Machine learningbased multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma. European Journal of Radiology 122, 108755. DOI: https://doi.org/10.1016/j.ejrad.2019.108755
  112. Wang, L., Zhang, L., Zhu, M., Qi, X., and Yi, Z. 2020. Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks. Medical Image Analysis 61, 101665. DOI: https://doi.org/10.1016/j.media.2020.101665
  113. Wang, N., Xu, Y., Ge, C., Guo, R., and Guo, K. 2006. Association of sonographically detected calcification with thyroid carcinoma. Head & Neck 28, 12 (Dec.), 1077–1083. DOI: https://doi.org/10.1002/hed.20481
  114. Wang, W., Ozolek, J. A., and Rohde, G. K. 2010. Detection and classification of thyroid follicular lesions based on nuclear structure from histopathology images. Cytometry Part A 9999A, NA–NA. DOI: https://doi.org/10.1002/cyto.a.20853
  115. Wei, X., Gao, M., Yu, R., Liu, Z., Gu, Q., Liu, X., Zheng, Z., Zheng, X., Zhu, J., and Zhang, S. 2020. Ensemble Deep Learning Model for Multicenter Classification of Thyroid Nodules on Ultrasound Images. Medical Science Monitor 26. DOI: https://doi.org/10.12659/MSM.926096
  116. Weng, Y., Zhou, T., Li, Y., and Qiu, X. 2019. NAS-Unet: Neural Architecture Search for Medical Image Segmentation. IEEE Access 7, 44247–44257. DOI: https://doi.org/10.1109/ACCESS.2019.2908991
  117. Werth, K. and Ledbetter, L. 2020. Artificial Intelligence in Head and Neck Imaging. Neuroimaging Clinics of North America 30, 3 (Aug.), 359–368. DOI: https://doi.org/10.1016/j.nic.2020.04.004
  118. Xue, Y.-L., Qiu, Z.-L., Perotti, G., Salvatori, M., and Luo, Q.-Y. 2013. 131I SPECT/CT: a one-station imaging modality in the management of differentiated thyroid cancer. Clinical and Translational Imaging 1, 3 (June), 163–173. DOI: https://doi.org/10.1007/s40336-013-0020-4
  119. Zadeh, H. G., Janianpour, S., and Haddadnia, J. 2013. Recognition and Classification of the Cancer Cells byusing Image Processing and Lab VIEW. International Journal of Computer Theory and Engineering, 104–107. DOI: https://doi.org/10.7763/IJCTE.2013.V5.656
  120. Zafereo, M., McIver, B., Vargas-Salas, S., Dom´ınguez, J. M., Steward, D. L., Holsinger, F. C., Kandil, E., Williams, M., Cruz, F., Loyola, S., Solar, A., Roa, J. C., Leon, A. ´ , Droppelman, N., Lobos, M., Arias, T., Kong, C. S., Busaidy, N., Grubbs, E. G., Graham, P., Stewart, J., Tang, A., Wang, J., Orloff, L., Henr´ıquez, M., Lagos, M., Osorio, M., Schachter, D., Franco, C., Medina, F., Wohllk, N., Diaz, R. E., Veliz, J., Horvath, E., Tala, H., Pineda, P., Arroyo, P., Vasquez, F., Traipe, E., Mar´ın, L., Miranda, G., Bruce, E., Bracamonte, M., Mena, N., and Gonzalez, H. E. ´ 2020. A Thyroid Genetic Classifier Correctly Predicts Benign Nodules with Indeterminate Cytology: Two Independent, Multicenter, Prospective Validation Trials. Thyroid 30, 5 (May), 704–712. DOI: https://doi.org/10.1089/thy.2019.0490
  121. Zhang, X. and Lee, V. C. 2024. Deep Learning Empowered Decision Support Systems for Thyroid Cancer Detection and Management. Procedia Computer Science 237, 945–954. DOI: https://doi.org/10.1016/j.procs.2024.05.183
  122. Zhang, X., Lee, V. C. S., Rong, J., Liu, F., and Kong, H. 2022. Multi-channel convolutional neural network architectures for thyroid cancer detection. PLOS ONE 17, 1 (Jan.), e0262128. DOI: https://doi.org/10.1371/journal.pone.0262128
  123. Zhao, C.-K., Ren, T.-T., Yin, Y.-F., Shi, H., Wang, H.-X., Zhou, B.-Y., Wang, X.-R., Li, X., Zhang, Y.-F., Liu, C., and Xu, H.-X. 2021. A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate. Thyroid 31, 3 (Mar.), 470–481. DOI: https://doi.org/10.1089/thy.2020.0305
  124. Zhao, Z., Ye, C., Hu, Y., Li, C., and Li, X. 2019. Cascade and Fusion of Multitask Convolutional Neural Networks for Detection of Thyroid Nodules in Contrast-Enhanced CT. Computational Intelligence and Neuroscience 2019, 1–13. DOI: https://doi.org/10.1155/2019/7401235
  125. Zhou, B., Liu, J., Yang, Y., Ye, X., Liu, Y., Mao, M., Sun, X., Cui, X., and Zhou, Q. 2024. Ultrasound-based nomogram to predict the recurrence in papillary thyroid carcinoma using machine learning. BMC Cancer 24, 1 (July), 810. DOI: https://doi.org/10.1186/s12885-024-12546-6
  126. Zhou, H., Wang, K., and Tian, J. 2020. Online Transfer Learning for Differential Diagnosis of Benign and Malignant Thyroid Nodules With Ultrasound Images. IEEE Transactions on Biomedical Engineering 67, 10 (Oct.), 2773–2780. DOI: https://doi.org/10.1109/TBME.2020.2971065
  127. Zhu, C., Tao, S., Chen, H., Li, M., Wang, Y., Liu, J., and Jin, M. 2021. Hybrid model enabling highly efficient follicular segmentation in thyroid cytopathological whole slide image. Intelligent Medicine 1, 2 (Aug.), 70–79. DOI: https://doi.org/10.1016/j.imed.2021.04.002
  128. Zhu, Y.-C., Sheng, J.-G., Deng, S.-H., Jiang, Q., and Guo, J. 2022. A deep learning-based diagnostic pattern for ultrasound breast imaging: can it reduce unnecessary biopsy? Gland Surgery 11, 9 (Sept.), 1529–1537. DOI: https://doi.org/10.21037/gs-22-473